Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data and Workflow
2.2.1. Sentinel-2 Data and Preprocessing
2.2.2. Sentinel-1 Data and Preprocessing
2.2.3. Digital Surface Model
2.2.4. Field Data on Crop Types
2.2.5. Reference Data for LULC Classification
2.3. Cropland Classification Approach
2.4. Crop Type Classification Approach
2.5. Accuracy Assessment
3. Results
3.1. Results of LULC Classification for the Three Study Areas
3.1.1. LULC Classification Maps
3.1.2. LULC Classification Accuracy Assessment
3.2. Comparison of Different Input Datasets for Crop Type Classification and Variable Importance
3.3. Results of Crop Type Classification for the Three Study Areas
3.3.1. Crop Type Classification Maps
3.3.2. Crop Type Classification Accuracy Assessment
4. Discussion
4.1. Classification Approach and Input Feature Importance
4.2. Classification Results and Influence of Reference Data on Accuracies Obtained
4.3. Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Data. Available online: https://www.fao.org/faostat/en/#data (accessed on 27 October 2023).
- UNFCCC. Ethiopia. A Case Study Conducted by the Climate Resilient Food Systems Alliance. 2022. Available online: https://unfccc.int/sites/default/files/resource/Ethiopia_CRFS_Case_Study.pdf (accessed on 26 October 2023).
- GIZ. Ensuring Food Security and Land Tenure. Available online: https://www.giz.de/en/worldwide/83147.html (accessed on 21 September 2023).
- Guo, Z. Map Teff in Ethiopia: An Approach to Integrate Time Series Remotely Sensed Data and Household Data at Large Scale. In Proceedings of the IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS)/35th Canadian Symposium on Remote Sensing, Quebec City, QC, Canada, 13–18 July 2014; pp. 2138–2141. [Google Scholar]
- Cheng, G.; Ding, H.; Yang, J.; Cheng, Y.S. Crop type classification with combined spectral, texture, and radar features of time-series Sentinel-1 and Sentinel-2 data. Int. J. Remote Sens. 2023, 44, 1215–1237. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Ouzemou, J.-E.; El Harti, A.; Lhissou, R.; El Moujahid, A.; Bouch, N.; El Ouazzani, R.; Bachaoui, E.M.; El Ghmari, A. Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sens. Appl. Soc. Environ. 2018, 11, 94–103. [Google Scholar] [CrossRef]
- Kobayashi, N.; Tani, H.; Wang, X.; Sonobe, R. Crop classification using spectral indices derived from Sentinel-2A imagery. J. Inf. Telecommun. 2020, 4, 67–90. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Zeng, Y.L.; Hao, D.L.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Env. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Schlund, M.; Erasmi, S. Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sens. Environ. 2020, 246, 111814. [Google Scholar] [CrossRef]
- Selvaraj, S.; Haldar, D.; Srivastava, H.S. Condition assessment of pearl millet/ bajra crop in different vigour zones using Radar Vegetation Index. Spat. Inf. Res. 2021, 29, 631–643. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Denize, J.; Roger, J.-L.; Spicher, F.; Lacoux, J.; Roger, D.; Baudry, J.; Hubert-Moy, L. Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data. Data Brief 2021, 38, 107408. [Google Scholar] [CrossRef] [PubMed]
- Meroni, M.; d’Andrimont, R.; Vrieling, A.; Fasbender, D.; Lemoine, G.; Rembold, F.; Seguini, L.; Verhegghen, A. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and-2. Remote Sens. Environ. 2021, 253, 112232. [Google Scholar] [CrossRef]
- Salehi, B.; Daneshfar, B.; Davidson, A.M. Accurate crop-type classification using multi-temporal optical and multi-polarization SAR data in an object-based image analysis framework. Int. J. Remote Sens. 2017, 38, 4130–4155. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Mack, B.; Conrad, C. Crop Type Classification Using Fusion of Sentinel-1 and Sentinel-2 Data: Assessing the Impact of Feature Selection, Optical Data Availability, and Parcel Sizes on the Accuracies. Remote Sens. 2020, 12, 2779. [Google Scholar] [CrossRef]
- Chakhar, A.; Hernandez-Lopez, D.; Ballesteros, R.; Moreno, M.A. Improving the Accuracy of Multiple Algorithms for Crop Classification by Integrating Sentinel-1 Observations with Sentinel-2 Data. Remote Sens. 2021, 13, 243. [Google Scholar] [CrossRef]
- Asam, S.; Gessner, U.; Gonzalez, R.A.; Wenzl, M.; Kriese, J.; Kuenzer, C. Mapping Crop Types of Germany by Combining Temporal Statistical Metrics of Sentinel-1 and Sentinel-2 Time Series with LPIS Data. Remote Sens. 2022, 14, 2981. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Katal, N.; Hooda, N.; Sharma, A.; Sharma, B. Cropland prediction using remote sensing, ancillary data, and machine learning. J. Appl. Remote Sens. 2022, 17, 022202. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Verhegghen, A.; Lemoine, G.; Kempeneers, P.; Meroni, M.; van der Velde, M. From parcel to continental scale—A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sens. Environ. 2021, 266, 112708. [Google Scholar] [CrossRef]
- Luo, C.; Liu, H.; Lu, L.; Liu, Z.; Kong, F.; Zhang, X. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. J. Integr. Agric. 2021, 20, 1944–1957. [Google Scholar] [CrossRef]
- Song, X.-P.; Huang, W.; Hansen, M.C.; Potapov, P. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Sci. Remote Sens. 2021, 3, 100018. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Spatial Transferability of Random Forest Models for Crop Type Classification Using Sentinel-1 and Sentinel-2. Remote Sens. 2022, 14, 1493. [Google Scholar] [CrossRef]
- Rivera, A.J.; Pérez-Godoy, M.D.; Elizondo, D.; Deka, L.; del Jesus, M.J. Analysis of clustering methods for crop type mapping using satellite imagery. Neurocomputing 2022, 492, 91–106. [Google Scholar] [CrossRef]
- Solano-Correa, Y.T.; Bovolo, F.; Bruzzone, L. A Semi-Supervised Crop-Type Classification Based on Sentinel-2 NDVI Satellite Image Time Series and Phenological Parameters. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 457–460. [Google Scholar]
- Lin, C.; Zhong, L.; Song, X.-P.; Dong, J.; Lobell, D.B.; Jin, Z. Early- and in-season crop type mapping without current-year ground truth: Generating labels from historical information via a topology-based approach. Remote Sens. Environ. 2022, 274, 112994. [Google Scholar] [CrossRef]
- Johnson, D.M.; Mueller, R. Pre- and within-season crop type classification trained with archival land cover information. Remote Sens. Environ. 2021, 264, 112576. [Google Scholar] [CrossRef]
- Rußwurm, M.; Courty, N.; Emonet, R.; Lefèvre, S.; Tuia, D.; Tavenard, R. End-to-end learned early classification of time series for in-season crop type mapping. ISPRS J. Photogramm. Remote Sens. 2023, 196, 445–456. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ali, H.; Descheemaeker, K.; Steenhuis, T.S.; Pandey, S. Comparison of landuse and landcover changes, drivers and impacts for a moisture-sufficient and drought-prone region in the Ethiopian highlands. Exp. Agric. 2011, 47, 71–83. [Google Scholar] [CrossRef]
- Daba, M.H.; You, S.C. Quantitatively Assessing the Future Land-Use/Land-Cover Changes and Their Driving Factors in the Upper Stream of the Awash River Based on the CA-Markov Model and Their Implications for Water Resources Management. Sustainability 2022, 14, 1538. [Google Scholar] [CrossRef]
- Dega, M.B.; Emana, A.N.; Feda, H.A. The Impact of Catchment Land Use Land Cover Changes on Lake Dandi, Ethiopia. J. Environ. Public Health 2022, 2022, 4936289. [Google Scholar] [CrossRef] [PubMed]
- Desalegn, T.; Cruz, F.; Kindu, M.; Turrion, M.B.; Gonzalo, J. Land-use/land-cover (LULC) change and socioeconomic conditions of local community in the central highlands of Ethiopia. Int. J. Sustain. Dev. World Ecol. 2014, 21, 406–413. [Google Scholar] [CrossRef]
- Desta, Y.; Goitom, H.; Aregay, G. Investigation of runoff response to land use/land cover change on the case of Aynalem catchment, North of Ethiopia. J. Afr. Earth Sci. 2019, 153, 130–143. [Google Scholar] [CrossRef]
- Mariye, M.; Li, J.H.; Maryo, M. Land use and land cover change, and analysis of its drivers in Ojoje watershed, Southern Ethiopia. Heliyon 2022, 8, e09267. [Google Scholar] [CrossRef]
- Mekasha, S.T.; Suryabhagavan, K.V.; Gebrehiwot, M. Geo-spatial approach for land-use and land-cover changes and deforestation mapping: A case study of Ankasha Guagusa, Northwestern, Ethiopia. Trop. Ecol. 2020, 61, 550–569. [Google Scholar] [CrossRef]
- Minta, M.; Kibret, K.; Thorne, P.; Nigussie, T.; Nigatu, L. Land use and land cover dynamics in Dendi-Jeldu hilly-mountainous areas in the central Ethiopian highlands. Geoderma 2018, 314, 27–36. [Google Scholar] [CrossRef]
- Moges, D.M.; Bhat, H.G. An insight into land use and land cover changes and their impacts in Rib watershed, north-western highland Ethiopia. Land Degrad. Dev. 2018, 29, 3317–3330. [Google Scholar] [CrossRef]
- Wondrade, N.; Dick, O.B.; Tveite, H. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia. Environ. Monit. Assess. 2014, 186, 1765–1780. [Google Scholar] [CrossRef]
- Yeshaneh, E.; Wagner, W.; Exner-Kittridge, M.; Legesse, D.; Bloschl, G. Identifying Land Use/Cover Dynamics in the Koga Catchment, Ethiopia, from Multi-Scale Data, and Implications for Environmental Change. ISPRS Int. J. Geo-Inf. 2013, 2, 302–323. [Google Scholar] [CrossRef]
- Eggen, M.; Ozdogan, M.; Zaitchik, B.F.; Simane, B. Land Cover Classification in Complex and Fragmented Agricultural Landscapes of the Ethiopian Highlands. Remote Sens. 2016, 8, 1020. [Google Scholar] [CrossRef]
- Xu, Y.D.; Yu, L.; Peng, D.L.; Cai, X.L.; Cheng, Y.Q.; Zhao, J.Y.; Zhao, Y.Y.; Feng, D.L.; Hackman, K.; Huang, X.M.; et al. Exploring the temporal density of Landsat observations for cropland mapping: Experiments from Egypt, Ethiopia, and South Africa. Int. J. Remote Sens. 2018, 39, 7328–7349. [Google Scholar] [CrossRef]
- Assefa, E.; Bork, H.R. Dynamics and driving forces of agricultural landscapes in Southern Ethiopia—A case study of the Chencha and Arbaminch areas. J. Land Use Sci. 2016, 11, 278–293. [Google Scholar] [CrossRef]
- Abera, A.; Verhoest, N.E.C.; Tilahun, S.; Inyang, H.; Nyssen, J. Assessment of irrigation expansion and implications for water resources by using RS and GIS techniques in the Lake Tana Basin of Ethiopia. Environ. Monit. Assess. 2021, 193, 13. [Google Scholar] [CrossRef]
- Gessesse, B.; Tesfamariam, B.G.; Melgani, F. Understanding traditional agro-ecosystem dynamics in response to systematic transition processes and rainfall variability patterns at watershed-scale in Southern Ethiopia. Agric. Ecosyst. Environ. 2022, 327, 107832. [Google Scholar] [CrossRef]
- Husak, G.J.; Marshall, M.T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography. J. Geophys. Res. Atmos. 2008, 113, D14112. [Google Scholar] [CrossRef]
- McCarty, J.L.; Neigh, C.S.R.; Carroll, M.L.; Wooten, M.R. Extracting smallholder cropped area in Tigray, Ethiopia with wall-to-wall sub-meter WorldView and moderate resolution Landsat 8 imagery. Remote Sens. Environ. 2017, 202, 142–151. [Google Scholar] [CrossRef]
- Mohammed, I.; Marshall, M.; de Bie, K.; Estes, L.; Nelson, A. A blended census and multiscale remote sensing approach to probabilistic cropland mapping in complex landscapes. ISPRS J. Photogramm. Remote Sens. 2020, 161, 233–245. [Google Scholar] [CrossRef]
- Neigh, C.S.R.; Carroll, M.L.; Wooten, M.R.; McCarty, J.L.; Powell, B.F.; Husak, G.J.; Enenkel, M.; Hain, C.R. Smallholder crop area mapped with wall-to-wall WorldView sub-meter panchromatic image texture: A test case for Tigray, Ethiopia. Remote Sens. Environ. 2018, 212, 8–20. [Google Scholar] [CrossRef]
- Vogels, M.F.A.; de Jong, S.M.; Sterk, G.; Addink, E.A. Agricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 114–123. [Google Scholar] [CrossRef]
- Sahle, M.; Yeshitela, K.; Saito, O. Mapping the supply and demand of Enset crop to improve food security in Southern Ethiopia. Agron. Sustain. Dev. 2018, 38, 7. [Google Scholar] [CrossRef]
- Gilbertson, J.K.; Kemp, J.; van Niekerk, A. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agric. 2017, 134, 151–159. [Google Scholar] [CrossRef]
- Maponya, M.G.; van Niekerk, A.; Mashimbye, Z.E. Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning. Comput. Electron. Agric. 2020, 169, 105164. [Google Scholar] [CrossRef]
- Aduvukha, G.R.; Abdel-Rahman, E.M.; Sichangi, A.W.; Makokha, G.O.; Landmann, T.; Mudereri, B.T.; Tonnang, H.E.Z.; Dubois, T. Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite Datasets. Agriculture 2021, 11, 530. [Google Scholar] [CrossRef]
- Kerner, H.; Nakalembe, C.; Becker-Reshef, I. Field-Level Crop Type Classification with k Nearest Neighbors: A Baseline for a New Kenya Smallholder Dataset. In Proceedings of the ICLR 2020 Workshop on Computer Vision for Agriculture, Addis Ababa, Ethiopia, 26 April 2020. [Google Scholar]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef]
- Elders, A.; Carroll, M.L.; Neigh, C.S.R.; D’Agostino, A.L.; Ksoll, C.; Wooten, M.R.; Brown, M.E. Estimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2. Remote Sens. Appl. Soc. Environ. 2022, 27, 100820. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Landmann, T.; Barry, B. Evaluating the sequential masking classification approach for improving crop discrimination in the Sudanian Savanna of West Africa. Comput. Electron. Agric. 2015, 118, 380–389. [Google Scholar] [CrossRef]
- Aguilar, R.; Zurita-Milla, R.; Izquierdo-Verdiguier, E.; de By, R.A. A Cloud-Based Multi-Temporal Ensemble Classifier to Map Smallholder Farming Systems. Remote Sens. 2018, 10, 729. [Google Scholar] [CrossRef]
- Lambert, M.-J.; Traoré, P.C.S.; Blaes, X.; Baret, P.; Defourny, P. Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt. Remote Sens. Environ. 2018, 216, 647–657. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Dupuy, S.; Vintrou, É.; Ameline, M.; Butler, S.; Bégué, A. A Combined Random Forest and OBIA Classification Scheme for Mapping Smallholder Agriculture at Different Nomenclature Levels Using Multisource Data (Simulated Sentinel-2 Time Series, VHRS and DEM). Remote Sens. 2017, 9, 259. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Barker, B.; Whitcraft, A.; Oliva, P.; Mobley, K.; Justice, C.; Sahajpal, R. Crop Type Maps for Operational Global Agricultural Monitoring. Sci. Data 2023, 10, 172. [Google Scholar] [CrossRef]
- NASA. Shuttle Radar Topograpy Mission (SRTM). Available online: https://www.earthdata.nasa.gov/sensors/srtm (accessed on 20 March 2023).
- Zepner, L.; Karrasch, P.; Wiemann, F.; Bernard, L. ClimateCharts.net—An interactive climate analysis web platform. Int. J. Digit. Earth 2021, 14, 338–356. [Google Scholar] [CrossRef]
- FAO; IIASA. Global Agro Ecological Zones Version 4 (GAEZ v4). Available online: http://www.fao.org/gaez/ (accessed on 22 March 2023).
- FAO. Crop Calendar. Available online: https://cropcalendar.apps.fao.org/ (accessed on 20 March 2023).
- ESA. Sentinel-2 User Handbook. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 25 September 2023).
- Google_Developers. Earth Engine Data Catalog. Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED (accessed on 25 September 2023).
- Google_Developers. Earth Engine Data Catalog. Sentinel-2: Cloud Probability. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY (accessed on 25 September 2023).
- Kamenova, I.; Dimitrov, P. Evaluation of Sentinel-2 vegetation indices for prediction of LAI, fAPAR and fCover of winter wheat in Bulgaria. Eur. J. Remote Sens. 2021, 54, 89–108. [Google Scholar] [CrossRef]
- Chen, D.Y.; Huang, J.F.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- Xie, G.Y.; Niculescu, S. Mapping Crop Types Using Sentinel-2 Data Machine Learning and Monitoring Crop Phenology with Sentinel-1 Backscatter Time Series in Pays de Brest, Brittany, France. Remote Sens. 2022, 14, 4437. [Google Scholar] [CrossRef]
- Holtgrave, A.K.; Röder, N.; Ackermann, A.; Erasmi, S.; Kleinschmit, B. Comparing Sentinel-1 and-2 Data and Indices for Agricultural Land Use Monitoring. Remote Sens. 2020, 12, 2919. [Google Scholar] [CrossRef]
- Palchowdhuri, Y.; Valcarce-Diñeiro, R.; King, P.; Sanabria-Soto, M. Classification of multi-temporal spectral indices for crop type mapping: A case study in Coalville, UK. J. Agric. Sci. 2018, 156, 24–36. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A.R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (Savi). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus-Hippocastanum L and Acer-Platanoides L Leaves—Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Barnes, E.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.L. Coincident detection of crop water stress, nitrogen status, and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Saraf, S.; Behera, M.D.; Biradar, C. Estimating Agricultural Crop Types and Fallow Lands Using Multi Temporal Sentinel-2A Imageries. Proc. Natl. Acad. Sci. USA 2017, 87, 769–779. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- ESA. Sentinel-1 SAR User Guide. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/ (accessed on 25 September 2023).
- Google_Developers. Earth Engine Data Catalog. Sentinel-1 SAR GRD: C-Band Synthetic Aperture Radar Ground Range Detected, Log Scaling. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (accessed on 27 September 2023).
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.; Gorelick, N.; Reiche, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- ESA. Sentinel-1 Observation Scenario. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario (accessed on 28 September 2023).
- Fu, B.L.; Xie, S.Y.; He, H.C.; Zuo, P.P.; Sun, J.; Liu, L.L.; Huang, L.K.; Fan, D.L.; Gao, E.R. Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm. Ecol. Indic. 2021, 131, 108173. [Google Scholar] [CrossRef]
- Lee, J.S.; Wen, J.H.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar] [CrossRef]
- Dong, J.W.; Xiao, X.M.; Chen, B.Q.; Torbick, N.; Jin, C.; Zhang, G.L.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- JAXA. ALOS Global Digital Surface Model (DSM). ALOS World 3D-30m (AW3D30). Version 2.2. Product Description. Available online: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/data/aw3d30v22_product_e_a.pdf (accessed on 25 September 2023).
- Google_Developers. Earth Engine Data Catalog. ALOS DSM: Global 30m v3.2. Available online: https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2 (accessed on 25 September 2023).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Congalton, R.G.; Oderwald, R.G.; Mead, R.A. Assessing Landsat Classification Accuracy Using Discrete Multivariate-Analysis Statistical Techniques. Photogramm. Eng. Remote Sens. 1983, 49, 1671–1678. [Google Scholar]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Troya-Galvis, A.; Gançarski, P.; Berti-Équille, L. Remote sensing image analysis by aggregation of segmentation-classification collaborative agents. Pattern Recognit. 2018, 73, 259–274. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- FAO. Land Cover Classification System (LCCS). Available online: https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036361/ (accessed on 15 February 2024).
- Sulla-Menashe, D.; Friedl, M.A.; Krankina, O.N.; Baccini, A.; Woodcock, C.E.; Sibley, A.; Sun, G.; Kharuk, V.; Elsakov, V. Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sens. Environ. 2011, 115, 392–403. [Google Scholar] [CrossRef]
- Kaptue Tchuenté, A.T.; De Jong, S.M.; Roujean, J.L.; Favier, C.; Mering, C. Ecosystem mapping at the African continent scale using a hybrid clustering approach based on 1-km resolution multi-annual data from SPOT/VEGETATION. Remote Sens. Environ. 2011, 115, 452–464. [Google Scholar] [CrossRef]
- Gavish, Y.; O’Connell, J.; Marsh, C.J.; Tarantino, C.; Blonda, P.; Tomaselli, V.; Kunin, W.E. Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site. ISPRS J. Photogramm. Remote Sens. 2018, 136, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Cao, X.; Wang, Y.; Zhang, W.; Cheng, X. A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing. ISPRS J. Photogramm. Remote Sens. 2023, 206, 311–334. [Google Scholar] [CrossRef]
- Fowler, J.; Waldner, F.; Hochman, Z. All pixels are useful, but some are more useful: Efficient in situ data collection for crop-type mapping using sequential exploration methods. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102114. [Google Scholar] [CrossRef]
- JECAM. JECAM Guidelines for Cropland and Crop Type Definition and Field Data Collection. Available online: http://jecam.org/wp-content/uploads/2018/10/JECAM_Guidelines_for_Field_Data_Collection_v1_0.pdf (accessed on 15 November 2023).
- Omotoso, A.B.; Letsoalo, S.; Olagunju, K.O.; Tshwene, C.S.; Omotayo, A.O. Climate change and variability in sub-Saharan Africa: A systematic review of trends and impacts on agriculture. J. Clean. Prod. 2023, 414, 137487. [Google Scholar] [CrossRef]
- Nakalembe, C.; Becker-Reshef, I.; Bonifacio, R.; Hu, G.; Humber, M.L.; Justice, C.J.; Keniston, J.; Mwangi, K.; Rembold, F.; Shukla, S.; et al. A review of satellite-based global agricultural monitoring systems available for Africa. Glob. Food Secur. 2021, 29, 100543. [Google Scholar] [CrossRef]
Amhara | Benishangul | Gambela | |
---|---|---|---|
Size of study area | 1594.23 km2 | 5242.74 km2 | 6205.83 km2 |
Terrain elevation | 760–2163 m | 549–2221 m | 405–1605 m |
Elevation of field data points | 1050–1930 m | 660–1560 m | 420–580 m |
Annual temperature mean | 19.5 °C | 22.6 °C | 27.6 °C |
Annual precipitation sum | 1424 mm | 1311 mm | 1099 mm |
Agro-ecological zone (FAO) | Tropics, lowland sub-humid; Land with terrain limitations (SW, S); Tropics, highland, sub-humid (NE) | Tropics, lowland sub-humid | Tropics, lowland sub-humid; Tropics, lowland, humid (SE) |
Woredas mainly covered by study area | Ankasha, Guangua, Wemberma | Assosa, Bambasi | Abobo, Etang, Gambela Zuria |
Name | Central Wavelength | Pixel Size | Description |
---|---|---|---|
B2 | 496.6 nm (S2A)/492.1 nm (S2B) | 10 m | Blue |
B3 | 560 nm (S2A)/559 nm (S2B) | 10 m | Green |
B4 | 664.5 nm (S2A)/665 nm (S2B) | 10 m | Red |
B5 | 703.9 nm (S2A)/703.8 nm (S2B) | 20 m | Red Edge 1 |
B6 | 740.2 nm (S2A)/739.1 nm (S2B) | 20 m | Red Edge 2 |
B7 | 782.5 nm (S2A)/779.7 nm (S2B) | 20 m | Red Edge 3 |
B8 | 835.1 nm (S2A)/833 nm (S2B) | 10 m | NIR |
B8A | 864.8 nm (S2A)/864 nm (S2B) | 20 m | Narrow NIR |
B11 | 1613.7 nm (S2A)/1610.4 nm (S2B) | 20 m | SWIR 1 |
B12 | 2202.4 nm (S2A)/2185.7 nm (S2B) | 20 m | SWIR 2 |
Name | Short Name | Formula | Description | Reference |
---|---|---|---|---|
Normalized Difference Vegetation Index | NDVI | Most widely used for vegetation monitoring; quantifies the vegetation’s photosynthetic response. | [79] | |
Modified Simple Ratio | MSR | Shows a relatively linear relation with canopy structure parameters. | [10,80] | |
Enhanced Vegetation Index | EVI | Developed to optimize the vegetation signal and to improve sensitivity in high biomass regions; reduces the atmospheric conditions and canopy background noise. | [81,82] | |
Enhanced Vegetation Index 2 | EVI2 | Two-band version of the EVI; minimizes soil background influence; requires no blue band. | [83] | |
Soil Adjusted Vegetation Index | SAVI | Attempts to reduce soil background conditions. | [84] | |
Green Normalized Difference Vegetation Index | GNDVI | Evaluates the photosynthetic activity of the vegetation; sensitive to chlorophyll concentration and pigment concentration. | [76,85] | |
Normalized Difference Red Edge Index 1 | NDRe1 | Directly proportional to chlorophyll; can serve as sensitive indicators of early stages of leaf senescence. | [86,87] | |
Normalized Difference Red Edge Index 2 | NDRe2 | Similar to the NDRe1, uses a different red-edge band combination. | [5,88] | |
Red-Edge NDVI Index | ReNDVI | Often used in biochemical applications; directly proportional to chlorophyll; indicates leaf senescence. | [10,86] | |
Green Normalized Difference Water Index | GNDWI | Developed to monitor changes related to water content in water bodies, was found to be relevant also for crop classification. | [19,89,90] | |
Normalized Difference Water Index 1 | NDWI1 | Highlights changes in the water content of vegetation canopies; sensitive to water stress and less sensitive to atmospheric effects than the NDVI. | [10,91] | |
Normalized Difference Water Index 2 | NDWI2 | Similar to the NDWI1, but constructed with SWIR band 12 instead of band 11 from Sentinel-2. | [10,91] |
Name | Short Name | Formula |
---|---|---|
Difference | Diff | |
Ratio | Ratio | |
Radar vegetation index | RVI |
Crop Type | Class No. | Amhara | Benishangul | Gambela | |||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Maize | 1 | 113 | 233 | 169 | 180 | 39 | 102 |
Sorghum | 2 | - | - | 293 | 183 | 25 | 36 |
Sunflower | 3 | 62 | 79 | - | - | - | - |
Sesame | 4 | 20 | 21 | 19 | - | - | 19 |
Mung bean | 5 | 27 | 53 | 3 * | - | 721 | 394 |
Soy bean | 6 | 75 | 128 | 157 | 63 | - | 87 |
Groundnut | 7 | - | - | 17 | - | - | - |
Haricot bean | 8 | 37 | 20 | 2 * | - | - | - |
Cotton | 9 | - | - | - | - | 350 | 215 |
Pepper | 10 | 29 | 22 | 100 | 199 | - | - |
Chickpea | 12 | 25 | - | - | - | - | - |
Wheat | 15 | 63 | 99 | - | - | - | - |
Mango tree 1 | 16 | - | - | 22 | 66 | - | 23 |
Coffee 1 | 17 | 74 | 92 | - | - | - | - |
Teff | 18 | 16 | 22 | 24 | 20 | - | - |
Finger millet | 19 | 21 | 13 | - | - | - | - |
Niger seed | 20 | - | - | 29 | 48 | - | - |
Flax seed | 21 | - | - | 1 * | - | - | - |
SUM | - | 562 | 782 | 836 | 759 | 1135 | 876 |
Name | Short Name | Formula |
---|---|---|
Producer’s accuracy | PA | |
User’s accuracy | UA | |
Overall accuracy | OA | |
F1-score | F1 |
AMH 2021 | AMH 2022 | BEN 2021 | BEN 2022 | GAM 2021 | GAM 2022 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[km2] | [%] | [km2] | [%] | [km2] | [%] | [km2] | [%] | [km2] | [%] | [km2] | [%] | |
Cropland | 101.46 | 79.3 | 102.86 | 80.4 | 107.65 | 18.8 | 115.75 | 20.2 | 405.22 | 16.6 | 522.83 | 21.4 |
Non-cropland | 26.53 | 20.7 | 25.14 | 19.6 | 464.92 | 81.2 | 456.82 | 79.8 | 2036.87 | 83.4 | 1919.27 | 78.6 |
SUM | 127.99 | 127.99 | 572.58 | 572.58 | 2442.10 | 2442.10 |
AMH 2021 | AMH 2022 | BEN 2021 | BEN 2022 | GAM 2021 | GAM 2022 | |
---|---|---|---|---|---|---|
Overall accuracy [%] | 87.5 | 88.9 | 89.2 | 87.2 | 89.7 | 86.6 |
Producer’s accuracy [%] for cropland class | 95.7 | 96.4 | 90.7 | 87.5 | 97.9 | 93.1 |
User’s accuracy [%] for cropland class | 90.1 | 92.6 | 91.9 | 90.7 | 89.5 | 84.8 |
F1-score [%] for cropland class | 92.8 | 94.5 | 91.3 | 89.1 | 93.5 | 88.8 |
AMH 2021 | AMH 2022 | BEN 2021 | BEN 2022 | GAM 2021 | GAM 2022 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[km2] | [%] | [km2] | [%] | [km2] | [%] | [km2] | [%] | [km2] | [%] | [km2] | [%] | |
Maize | 61.9051 | 61.01 | 67.2309 | 65.36 | 37.5616 | 34.89 | 47.9994 | 41.47 | 11.7496 | 2.90 | 89.4852 | 17.12 |
Sorghum | - | - | - | - | 38.6618 | 35.91 | 43.0771 | 37.21 | 24.4287 | 6.03 | 3.4753 | 0.66 |
Sunflower | 3.9644 | 3.91 | 5.6068 | 5.45 | - | - | - | - | - | - | - | - |
Sesame | 0.5605 | 0.55 | 0.3739 | 0.36 | 0.1145 | 0.11 | - | - | - | - | 0.8099 | 0.15 |
Mung bean | 1.3982 | 1.38 | 2.8713 | 2.79 | - | - | - | - | 252.3298 | 62.27 | 312.816 | 59.83 |
Soy bean | 11.499 | 11.33 | 10.4768 | 10.19 | 18.3924 | 17.08 | 12.7959 | 11.05 | - | - | 3.9267 | 0.75 |
Groundnut | - | - | - | - | 0.0191 | 0.02 | - | - | - | - | - | - |
Haricot bean | 5.4474 | 5.37 | 0.1424 | 0.14 | - | - | - | - | - | - | - | - |
Cotton | - | - | - | - | - | - | - | - | 116.7159 | 28.80 | 111.7163 | 21.37 |
Pepper | 1.5435 | 1.52 | 1.1936 | 1.16 | 10.0832 | 9.37 | 8.3346 | 7.20 | - | - | - | - |
Chickpea | 1.1034 | 1.09 | - | - | - | - | - | - | - | - | - | - |
Wheat | 8.5287 | 8.41 | 9.0344 | 8.78 | - | - | - | - | - | - | - | - |
Mango tree | - | - | - | - | 0.1137 | 0.11 | 0.0181 | 0.02 | - | - | 0.5962 | 0.11 |
Coffee | 5.0093 | 4.94 | 4.9900 | 4.85 | - | - | - | - | - | - | - | - |
Teff | 0.365 | 0.36 | 0.8858 | 0.86 | 0.3157 | 0.29 | 0.0214 | 0.02 | - | - | - | - |
Finger millet | 0.1358 | 0.13 | 0.0533 | 0.05 | - | - | - | - | - | - | - | - |
Niger seed | - | - | - | - | 2.3906 | 2.22 | 3.5083 | 3.03 | - | - | - | - |
Flax seed | - | - | - | - | 0.0001 | 0.00 | - | - | - | - | - | - |
SUM | 101.4603 | 102.8592 | 107.6527 | 115.7548 | 405.224 | 522.8256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eisfelder, C.; Boemke, B.; Gessner, U.; Sogno, P.; Alemu, G.; Hailu, R.; Mesmer, C.; Huth, J. Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia. Remote Sens. 2024, 16, 866. https://doi.org/10.3390/rs16050866
Eisfelder C, Boemke B, Gessner U, Sogno P, Alemu G, Hailu R, Mesmer C, Huth J. Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia. Remote Sensing. 2024; 16(5):866. https://doi.org/10.3390/rs16050866
Chicago/Turabian StyleEisfelder, Christina, Bruno Boemke, Ursula Gessner, Patrick Sogno, Genanaw Alemu, Rahel Hailu, Christian Mesmer, and Juliane Huth. 2024. "Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia" Remote Sensing 16, no. 5: 866. https://doi.org/10.3390/rs16050866