Developing an Online Measurement Device Based on Resistance Sensor for Measurement of Single Grain Moisture Content in Drying Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Apparatus
2.2. Sample Preparation
2.3. Experimental Methods
3. Results and Discussions
3.1. General View of the Electrical Properties
3.2. Effect of Diameter of Rollers and Gap Width Between Rollers on Electrical Properties
3.3. Analytical Calculation Method of Waveforms
3.4. Validation of the Device
3.4.1. Lab Tests
3.4.2. Field Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, C. Exergy evaluation theory of hot air drying system for grains. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–6. (In Chinese) [Google Scholar] [CrossRef]
- Mortaza, A.; Soleiman, H.; Mujumdar, A.S. Application of artificial neural networks (ANNs) in drying technology: A comprehensive review. Dry. Technol. 2015, 33, 1397–1462. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, X.; Li, C. Distribution and variation of rice kernel moisture content. Trans. Chin. Soc. Agric. Mach. 2005, 36, 81–84. (In Chinese) [Google Scholar]
- ASABE. Moisture Measurement-Unground Grain and Seeds; ASAE standards: St. Joseph, MI, USA, 2006. [Google Scholar]
- Huang, H.; Yu, H.; Xu, H.; Ying, Y. Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review. J. Food Eng. 2008, 87, 303–313. [Google Scholar] [CrossRef]
- Amjad, W.; Crichton, S.O.J.; Munir, A.; Hensel, O.; Sturm, B. Hyperspectral imaging for the determination of potato slice moisture content and chromaticity during the convective hot air drying process. J. Biosyst. Eng. 2018, 166, 170–183. [Google Scholar] [CrossRef]
- Patel, K.K.; Khan, M.A.; Kar, A. Recent developments in applications of MRI techniques for foods and agricultural produce—An overview. J. Food. Sci. Technol. 2015, 52, 1–26. [Google Scholar] [CrossRef]
- Chen, A.; Chen, H.-Y.; Chen, C. Use of temperature and humidity sensors to determine moisture content of oolong tea. Sensors 2014, 14, 15593–15609. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, A.; Tarricone, L.; Vallone, M.; Cannazza, G.; Cipressa, M. TDR moisture measurements in granular materials: From the siliceous sand test case to the applications for agro-food industrial monitoring. Comput. Stand. Inter. 2010, 32, 86–95. [Google Scholar] [CrossRef]
- Lewis, M.A.; Trabelsi, S.; Nelson, S.O.; Tollner, E.W.; Haidekker, M.A. An automated approach to peanut drying with real-time microwave monitoring of inshell kernel moisture content. Appl. Eng. Agric. 2013, 29, 583–593. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Ma, Q.; Fan, L.-F.; Zhao, P.-F.; Wang, J.-X.; Zhang, X.-D.; Zhu, D.-H.; Huang, L.; Zhao, D.-J.; Wang, Z.-Y. Nondestructive in situ measurement method for kernel moisture content in corn ear. Sensors 2016, 16, 2196. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Mai, Z.; Fang, Z. Development of seed circulation drying system. Trans. Chin. Soc. Agric. Mach. 2014, 45, 242–248. (In Chinese) [Google Scholar] [CrossRef]
- Su, Y.; Zhang, M.; Mujumdar, A.S. Recent developments in smart drying technology. Dry. Technol. 2015, 33, 260–276. [Google Scholar] [CrossRef]
- Jia, C.; Wang, L.; Guo, W.; Liu, C. Effect of swing temperature and alternating airflow on drying uniformity in deep-bed wheat drying. Appl. Therm. Eng. 2016, 106, 774–783. [Google Scholar] [CrossRef]
- Zambrano, M.V.; Dutta, B.; Mercer, D.G.; Maclean, H.L.; Touchie, M. Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends Food Sci. Technol. 2019, 88, 484–496. [Google Scholar] [CrossRef]
- Chen, C. Uncertainty evaluation of conductance moisture meters for rough grain. J. Biosyst. Eng. 2008, 99, 508–514. [Google Scholar] [CrossRef]
- You, K.Y.; Mun, H.K.; You, L.L.; Salleh, J.; Abbas, Z. A Small and slim coaxial probe for single rice grain moisture sensing. Sensors 2013, 13, 3652–3663. [Google Scholar] [CrossRef] [Green Version]
- Heman, A.; Hsieh, C.L. Measurement of moisture content for rough rice by visible and near—Infrared (NIR) spectroscopy. Eng. Agric. Environ. Food 2016, 9, 280–290. [Google Scholar] [CrossRef]
- Wu, H.; Xie, H.; Hu, Z.; Gu, F.; You, Z.; Yan, J.; Wei, H. Design and experiment of continuous single grain typed online grain moisture test apparatus. Trans. Chin. Soc. Agric. Eng. 2017, 33, 282–290. (In Chinese) [Google Scholar]
- Chen, X.; Chen, H. Physical Property Analysis Technology and Instrument; Mechanical Industry Press: Beijing, China, 2002; pp. 75–78. [Google Scholar]
- 3-Channel, Low Noise, Low Power, 16-/24-Bit ∑-Δ ADC with On-Chip In-Amp and Reference; Analog-Devices: Norwood, MA, USA, 2007; AD7792/AD7793.
- Li, B.; Li, C.; Li, T.; Zeng, Z.; Ou, W.; Li, C. Exergetic, energetic, and quality performance evaluation of paddy drying in a novel industrial multi-field synergistic dryer. Energies 2019, 12, 4588. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Li, C.; Li, C.; Xu, F.; Fang, Z. Porosity of flowing rice layer: Experiments and numerical simulation. J. Biosyst. Eng. 2019, 179, 1–12. [Google Scholar] [CrossRef]
- Chen, K.; Liang, W. Effect of moisture content on mechanical properties of rice. Trans. Chin. Soc. Agric. Mach. 2005, 36, 171–175. (In Chinese) [Google Scholar]
- Zhou, X.; Zhang, Y.; Chu, H.; Liu, Y. Experiment and analysis of mechanical properties of mechanical crushing brown rice. Trans. Chin. Soc. Agric. Eng. 2012, 28, 255–262. (In Chinese) [Google Scholar] [CrossRef]
- Li, Q.; Wang, N.; Yi, D. Numerical Analysis, 5th ed.; Tsinghua University Press: Beijing, China, 2008; pp. 90–108. [Google Scholar]
- Yang, Z.; Lu, K.; Liu, C. Design of the intelligent humidiometer to test grain’s damp. J. Electron. Meas. Instrum. 1996, 10, 64–66. (In Chinese) [Google Scholar]
- Zheng, X.; Qin, Q.; Wang, L.; Zhu, Y.; Shen, L.; Fu, H. Airflow improving foam berry pulp microwave drying uniformity and energy efficiency. Trans. Chin. Soc. Agric. Eng. 2019, 35, 280–290. (In Chinese) [Google Scholar]
Species | Varieties | Length/mm | Width/mm | Thickness/mm | Volumetric Mean Diameter/mm |
---|---|---|---|---|---|
Round rough rice | Xiangzaoxian 45# | 7.2 | 3.44 | 2.53 | 3.64 |
Wheat | Lumai 21# | 7.16 | 3.42 | 3.68 | 4.26 |
Barley | Longpimai 2# | 11.24 | 2.12 | 1.45 | 2.40 |
Long rough rice | Nanjing 9108# | 10.12 | 2.23 | 1.66 | 2.61 |
Species | Moisture Content | Conditions | R2 |
---|---|---|---|
Round rice | 0.995 | ||
0.992 | |||
Wheat | M = | 0.998 | |
0.981 | |||
Barley | M = | 0.987 | |
M = | 0.995 | ||
Long rice | 0.987 | ||
0.994 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, B.; Huang, J.; Li, C. Developing an Online Measurement Device Based on Resistance Sensor for Measurement of Single Grain Moisture Content in Drying Process. Sensors 2020, 20, 4102. https://doi.org/10.3390/s20154102
Li C, Li B, Huang J, Li C. Developing an Online Measurement Device Based on Resistance Sensor for Measurement of Single Grain Moisture Content in Drying Process. Sensors. 2020; 20(15):4102. https://doi.org/10.3390/s20154102
Chicago/Turabian StyleLi, Chengjie, Bin Li, Junying Huang, and Changyou Li. 2020. "Developing an Online Measurement Device Based on Resistance Sensor for Measurement of Single Grain Moisture Content in Drying Process" Sensors 20, no. 15: 4102. https://doi.org/10.3390/s20154102
APA StyleLi, C., Li, B., Huang, J., & Li, C. (2020). Developing an Online Measurement Device Based on Resistance Sensor for Measurement of Single Grain Moisture Content in Drying Process. Sensors, 20(15), 4102. https://doi.org/10.3390/s20154102