Improvement in the Tracking Performance of a Maneuvering Target in the Presence of Clutter
Abstract
:1. Introduction
- This work has enhanced the earlier work proposed in Ref. [33] by adding novelty in terms of mathematical modeling for maneuvering target tracking and its fixed lag smoothing;
- Mathematical formulation for the FLs IMM-IPDA in terms of smoothed target trajectory state estimation, smoothed target existence state update, and smoothed mode probabilities;
- Utilization of the fixed lag smoothing algorithm to improve the tracking performance of IMM-IPDA;
- Improvement in the RMSE, TTR, and mode probabilities using the fixed lag smoothing algorithm;
- A complete set of simulations are performed in MATLAB to prove the above contributions.
2. Mathematical Model
2.1. Measurement Model
2.2. Target Motion Models
3. Fixed Lag Smoothing IMM IPDA
Track Information Mixing
4. Simulation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Joint Mode Transition Probabilities
References
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software; John Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1255–1321. [Google Scholar]
- Yuan, X.; Wang, Y.; Su, J. A comparison of interactive multiple modeling algorithms for maneuvering targets tracking. In Proceedings of the IEEE 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 20–22 December 2019; pp. 17–22. [Google Scholar]
- Li, B.; Pang, F.; Liang, C.; Chen, X.; Liu, Y. Improved interactive multiple model filter for maneuvering target tracking. In Proceedings of the IEEE Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 7312–7316. [Google Scholar]
- Zhang, H.; Li, L.; Xie, W. Constrained multiple model particle filtering for bearings-only maneuvering target tracking. IEEE Access 2018, 6, 51721–51734. [Google Scholar] [CrossRef]
- Feng, F.X. A New IMM method for tracking maneuvering target. J. Electron. Inf. Technol. 2007, 29, 532–535. [Google Scholar]
- Zhu, W.; Wang, W.; Yuan, G. An improved interacting multiple model filtering algorithm based on the cubature Kalman filter for maneuvering target tracking. Sensors 2016, 16, 805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Shalom, Y.; Daum, F.; Huang, J. The probabilistic data association filter. IEEE Control. Syst. Mag. 2009, 29, 82–100. [Google Scholar]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Toloei, A.; Niazi, S. State estimation for target tracking problems with nonlinear Kalman filter algorithms. Int. J. Comput. Appl. 2014, 98, 30–36. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Tse, E. Tracking in a cluttered environment with probabilistic data association. Automatica 1975, 11, 451–460. [Google Scholar] [CrossRef]
- Challa, S.; Morelande, M.R.; Mušicki, D.; Evans, R.J. Fundamentals of Object Tracking; Cambridge University Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Li, B. An improved Bernoulli particle filter for single target tracking. Multidimens. Syst. Signal Process. 2018, 29, 799–819. [Google Scholar] [CrossRef]
- Blackman, S.S. Multiple Target Tracking with Radar Applications; Artech House, Inc.: Dedham, MA, USA, 1986; Volume 1. [Google Scholar]
- Blackman, S.S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 5–18. [Google Scholar] [CrossRef]
- Radosavljevic, Z.; Ivkovic, D.; Kovacevic, B. MHT and ITS: A Look at Single Target Tracking in Clutter. In Proceedings of the EUSAR 2018, 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; pp. 1–6. [Google Scholar]
- Khan, U.; Song, T.L. Target tracking with a two-scan data association algorithm extended for the hybrid target state. IET Radar Sonar Navig. 2015, 9, 1330–1337. [Google Scholar] [CrossRef]
- Musicki, D.; La Scala, B.F.; Evans, R.J. Integrated track splitting filter-efficient multi-scan single target tracking in clutter. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1409–1425. [Google Scholar]
- Blackman, S. Design and Analysis of Modern Tracking Systems; Artech House: Boston, MA, USA, 1999. [Google Scholar]
- Zeng, K.; Yi, W.; Peng, Q.; Deng, J. A multi-scan joint tracking and classification method for weak targets. In Proceedings of the IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar]
- Wang, G.; Feng, C.; Tao, J.; Mo, R.; Zhang, M. Research on multi-maneuvering target tracking JPDA algorithm. In Proceedings of the IEEE Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 3558–3561. [Google Scholar]
- Dong, P.; Jing, Z.; Gong, D.; Tang, B. Maneuvering multi-target tracking based on variable structure multiple model GMCPHD filter. Signal Process. 2017, 141, 158–167. [Google Scholar] [CrossRef]
- Musicki, D.; Evans, R. Joint integrated probabilistic data association: JIPDA. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1093–1099. [Google Scholar] [CrossRef]
- Fortmann, T.; Bar-Shalom, Y.; Scheffe, M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE J. Ocean. Eng. 1983, 8, 173–184. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Shin, H.S.; Tsourdos, A. Joint probabilistic data association filter with unknown detection probability and clutter rate. Sensors 2018, 18, 269. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.; Qi, C.; Wang, W. Maneuvering target tracking algorithm based on adaptive markov transition probabilitiy matrix and IMM-MGEKF. In Proceedings of the IEEE 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 1–6 December 2018; pp. 1–4. [Google Scholar]
- Han, B.; Huang, H.; Lei, L.; Huang, C.; Zhang, Z. An improved IMM algorithm based on STSRCKF for maneuvering target tracking. IEEE Access 2019, 7, 57795–57804. [Google Scholar] [CrossRef]
- Rashid, M.; Sebt, M.A. Tracking a maneuvering target in the presence of clutter by multiple detection radar and infrared sensor. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1917–1922. [Google Scholar]
- Musicki, D.; Suvorova, S. Tracking in clutter using IMM-IPDA-based algorithms. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 111–126. [Google Scholar] [CrossRef]
- Chakravorty, R.; Challa, S. Augmented state integrated probabilistic data association smoothing for automatic track initiation in clutter. J. Adv. Inf. Fusion. 2006, 1, 63–74. [Google Scholar]
- Zeb, N.; Hameed, G.; Manzoor, S.; Ullah, I.; Khan, S.; Asad, M.; Jhangiri, Z.M.; Khan, U. A fixed-lag smoothing interactive multiple model tracking and interception system for maneuvering target. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 605–615. [Google Scholar] [CrossRef]
- Khan, U.; Musicki, D.; Song, T.L. A fixed lag smoothing IPDA tracking in clutter. In Proceedings of the IEEE 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 1–4 November 2014; pp. 1–7. [Google Scholar]
- Khan, U.; Shi, Y.F.; Song, T.L. Fixed lag smoothing target tracking in clutter for a high pulse repetition frequency radar. EURASIP J. Adv. Signal Process. 2015, 2015, 47. [Google Scholar] [CrossRef] [Green Version]
- Memon, S.; Son, H.; Memon, K.H.; Ansari, A. Multi-scan smoothing for tracking manoeuvering target trajectory in heavy cluttered environment. IET Radar Sonar Navig. 2017, 11, 1815–1821. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, G.A.; Khan, S.; Memon, S.A.; Shahzad, M.; Mahmood, Z.; Khan, U. Improvement in the Tracking Performance of a Maneuvering Target in the Presence of Clutter. Sensors 2022, 22, 7848. https://doi.org/10.3390/s22207848
Shah GA, Khan S, Memon SA, Shahzad M, Mahmood Z, Khan U. Improvement in the Tracking Performance of a Maneuvering Target in the Presence of Clutter. Sensors. 2022; 22(20):7848. https://doi.org/10.3390/s22207848
Chicago/Turabian StyleShah, Ghawas Ali, Sumair Khan, Sufyan Ali Memon, Mohsin Shahzad, Zahid Mahmood, and Uzair Khan. 2022. "Improvement in the Tracking Performance of a Maneuvering Target in the Presence of Clutter" Sensors 22, no. 20: 7848. https://doi.org/10.3390/s22207848