Effect of Data-Processing Methods on Acceleration Summary Metrics of GNSS Devices in Elite Australian Football
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Equipment
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Between Processing Methods Effects
3.2. Within Processing Method Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cummins, C.; Orr, R.; O’Connor, H.; West, C. Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Med. 2013, 43, 1025–1042. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ronda, L.; Clubb, J.; Beanland, E. Tracking systems in team sports: Back to basics. Sport Perform. Sci. Rep. 2022, 159, 1–9. [Google Scholar]
- Silva, H.; Nakamura, F.Y.; Ribeiro, J.; Asian-Clemente, J.; Roriz, P.; Marcelino, R. Using minimum effort duration can compromise the analysis of acceleration and deceleration demands in football. Int. J. Perform. Anal. Sport 2023, 23, 125–137. [Google Scholar] [CrossRef]
- Duthie, G.M.; Robertson, S.; Thornton, H.R. A GNSS-based method to define athlete manoeuvrability in field-based team sports. PLoS ONE 2021, 16, e0260363. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.; Al Mudawi, N.; Abdelhaq, M.; Alazeb, A.; Alotaibi, S.S.; Algarni, A.; Jalal, A. A Wearable Inertial Sensor Approach for Locomotion and Localization Recognition on Physical Activity. Sensors 2024, 24, 735. [Google Scholar] [CrossRef] [PubMed]
- Gastin, P.B.; McLean, O.; Spittle, M.; Breed, R.V. Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. J. Sci. Med. Sport 2013, 16, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Ellens, S.; Middleton, K.; Gastin, P.B.; Varley, M.C. Techniques to derive and clean acceleration and deceleration data of athlete tracking technologies in team sports: A scoping review. J. Sports Sci. 2022, 40, 1772–1800. [Google Scholar] [CrossRef] [PubMed]
- Akenhead, R.; Harley, J.A.; Tweddle, S.P. Examining the external training load of an English Premier League football team with special reference to acceleration. J. Strength Cond. Res. 2016, 30, 2424–2432. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.A.; Cummins, C.J.; Thornton, H.R.; Duthie, G.M. Importance, reliability, and usefulness of acceleration measures in team sports. J. Strength Cond. Res. 2018, 32, 3485–3493. [Google Scholar] [CrossRef]
- Johnston, R.D.; Black, G.M.; Harrison, P.W.; Murray, N.B.; Austin, D.J. Applied Sport Science of Australian Football: A Systematic Review. Sports Med. 2018, 48, 1673–1694. [Google Scholar] [CrossRef] [PubMed]
- Varley, M.C.; Jaspers, A.; Helsen, W.F.; Malone, J.J. Methodological considerations when quantifying high-intensity efforts in team sport using global positioning system technology. Int. J. Sports Physiol. Perform. 2017, 12, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.A.; Wileman, T.M.; Perry, N.J.; Thornton, H.R.; Moresi, M.P.; Duthie, G.M. The validity of a global navigation satellite system for quantifying small-area team-sport movements. J. Strength Cond. Res. 2019, 33, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.T.; Scott, T.J.; Kelly, V.G. The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, R.J.; Watson, G.; Stuart, W.; Twentyman, C.; Kitic, C.M.; Schmidt, M. The validity, reliability, and agreement of global positioning system units-can we compare research and applied data? J. Strength Cond. Res. 2022, 36, 3330–3338. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.D.; Hewitt, A.; Duthie, G. Validity of Real-Time Ultra-wideband Global Navigation Satellite System Data Generated by a Wearable Microtechnology Unit. J. Strength Cond. Res. 2019, 34, 2071–2075. [Google Scholar] [CrossRef]
- Linke, D.; Link, D.; Lames, M. Validation of electronic performance and tracking systems EPTS under field conditions. PLoS ONE 2018, 13, e0199519. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using gps devices in sport. Int. J. Sport Physiol. Perform. 2017, 12, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Thornton, H.R.; Nelson, A.R.; Delaney, J.A.; Serpiello, F.R.; Duthie, G.M. Interunit Reliability and Effect of Data-Processing Methods of Global Positioning Systems. Int. J. Sport Physiol. Perform. 2019, 14, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.; Thornton, H.; Delaney, J.; McMahon, J.; Benton, D. Relationship between physical performance testing results and peak running intensity during professional rugby league match play. J. Strength Cond. Res. 2020, 34, 3506–3513. [Google Scholar] [CrossRef]
- Delves, R.I.M.; Duthie, G.M.; Ball, K.A.; Aughey, R.J. Applying common filtering processes to Global Navigation Satellite System-derived acceleration during team sport locomotion. J. Sports Sci. 2022, 40, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Catapult. Vector Data Validation; Catapult: Melbourne, Australia, 2020. [Google Scholar]
- Crang, Z.L.; Duthie, G.; Cole, M.H.; Weakley, J.; Hewitt, A.; Johnston, R.D. The inter-device reliability of global navigation satellite systems during team sport movement across multiple days. J. Sci. Med. Sport 2021, 25, 340–344. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Fortes, V.; Krustrup, P.; Muyor, J.M. Acceleration and sprint profiles of professional male football players in relation to playing position. PLoS ONE 2020, 15, e0236959. [Google Scholar] [CrossRef] [PubMed]
- Ellens, S.; Carey, D.; Gastin, P.; Varley, M.C. Changing the criteria applied to acceleration and deceleration efforts changes the types of player actions detected. Sci. Med. Footb. 2022, 8, 52–59. [Google Scholar] [CrossRef] [PubMed]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall: London, UK, 1989. [Google Scholar]
- Newans, T.; Bellinger, P.; Drovandi, C.; Buxton, S.; Minahan, C. The Utility of Mixed Models in Sport Science: A Call for Further Adoption in Longitudinal Data Sets. Int. J. Sport Physiol. Perform. 2022, 17, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Rennie, M.J.; Kelly, S.J.; Bush, S.; Spurrs, R.W.; Austin, D.J.; Watsford, M.L. Phases of match-play in professional Australian Football: Distribution of physical and technical performance. J. Sports Sci. 2020, 38, 1682–1689. [Google Scholar] [CrossRef]
- Delves, R.I.M.; Aughey, R.J.; Ball, K.; Duthie, G.M. The quantification of acceleration events in elite team sport: A systematic review. Sports Med.-Open 2021, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kawabata, M.; Goto, K.; Fukusaki, C.; Sasaki, K.; Hihara, E.; Mizushina, T.; Ishii, N. Acceleration patterns in the lower and upper trunk during running. J. Sport Sci. 2013, 31, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; McGhie, D.; Ettema, G. Sprint running: From fundamental mechanics to practice-a review. Eur. J. Appl. Physiol. 2019, 119, 1273–1287. [Google Scholar] [CrossRef] [PubMed]
- Nagahara, R.; Kanehisa, H.; Fukunaga, T. Ground reaction force across the transition during sprint acceleration. Scand. J. Med. Sci. Sports 2020, 30, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Le Mat, Y.; Osgnach, C.; Barnabo, A.; Pilati, A.; Samozino, P.; di Prampero, P.E. Individual acceleration-speed profile in-situ: A proof of concept in professional football players. J. Biomech. 2021, 123, 110524. [Google Scholar] [CrossRef]
- Morin, J.D.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.R. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [PubMed]
- di Prampero, P.E.; Fusi, S.; Sepulcri, L.; Morin, J.B.; Belli, A.; Antonutto, G. Sprint running: A new energetic approach. J. Exp. Biol. 2005, 208, 2809–2816. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ying, R.; Dai, Z.; Wang, Y.; Qian, J.; Liu, P. Multi-Phase Fusion for Pedestrian Localization Using Mass-Market GNSS and MEMS Sensors. Sensors 2023, 23, 3624. [Google Scholar] [CrossRef] [PubMed]
- Linke, D.; Link, D.; Lames, M. Football-specific validity of TRACAB’s optical video tracking systems. PLoS ONE 2020, 15, e0230179. [Google Scholar] [CrossRef] [PubMed]
Data Processing Method | How the Acceleration Data Were Obtained |
---|---|
Raw | Central difference method applied to raw GNSS Doppler-shift speed data to calculate acceleration. |
Custom | Raw GNSS Doppler-shift speed data were processed with a fourth order (zero lag) low-pass Butterworth filter with a cut-off frequency of 2 Hz, whereafter acceleration was calculated using a central difference method on the processed GNSS Doppler-shift speed data. |
Manufacturer | GNSS acceleration data were directly exported from manufacturer software using their default settings. |
Effect of Processing Method on Distance | ||||||||
---|---|---|---|---|---|---|---|---|
Intensity | Effect | Estimate (m) | Lower 95% CI | Higher 95% CI | df | t | p | |
Acceleration | High | Custom–Manufacturer | 413 | 389 | 437 | 697 | 34 | <0.001 |
Raw–Manufacturer | 1373 | 1349 | 1397 | 697 | 112 | <0.001 | ||
Raw–Custom | 959 | 935 | 983 | 696 | 78 | <0.001 | ||
Medium | Custom–Manufacturer | 529 | 515 | 543 | 719 | 74 | <0.001 | |
Raw–Manufacturer | 1042 | 1028 | 1056 | 719 | 145 | <0.001 | ||
Raw–Custom | 513 | 499 | 527 | 719 | 71 | <0.001 | ||
Deceleration | High | Custom–Manufacturer | 217 | 200 | 233 | 696 | 25 | <0.001 |
Raw–Manufacturer | 849 | 832 | 865 | 696 | 100 | <0.001 | ||
Raw–Custom | 632 | 615 | 649 | 696 | 74 | <0.001 | ||
Medium | Custom–Manufacturer | 327 | 315 | 339 | 719 | 53 | <0.001 | |
Raw–Manufacturer | 798 | 786 | 810 | 719 | 130 | <0.001 | ||
Raw–Custom | 471 | 459 | 484 | 719 | 76 | <0.001 |
Effect of Processing Method on Number of Efforts | ||||||
---|---|---|---|---|---|---|
Intensity | Effect | Estimate (Rate of Change) | Lower 95% CI | Higher 95% CI | p | |
Acceleration | High | Custom–Manufacturer | 55.7 | 51.3 | 60.4 | <0.001 |
Raw–Manufacturer | 89.7 | 82.6 | 97.4 | <0.001 | ||
Raw–Custom | 1.61 | 1.57 | 1.66 | <0.001 | ||
Medium | Custom–Manufacturer | 1.43 | 1.38 | 1.48 | <0.001 | |
Raw–Manufacturer | 6.13 | 5.93 | 6.34 | <0.001 | ||
Raw–Custom | 4.29 | 4.16 | 4.43 | <0.001 | ||
Deceleration | High | Custom–Manufacturer | 8.88 | 8.51 | 9.57 | <0.001 |
Raw–Manufacturer | 15.2 | 14.6 | 15.9 | <0.001 | ||
Raw–Custom | 1.71 | 1.67 | 1.77 | <0.001 | ||
Medium | Custom–Manufacturer | 1.18 | 1.14 | 1.23 | <0.001 | |
Raw–Manufacturer | 5.09 | 4.92 | 5.27 | <0.001 | ||
Raw–Custom | 4.30 | 4.16 | 4.45 | <0.001 |
Effect of Intensity on Distance | ||||||||
---|---|---|---|---|---|---|---|---|
Processing | Effect | Estimate (m) | Lower 95% CI | Higher 95% CI | df | t | p | |
Acceleration | Manufacturer | Medium–High | 118 | 114 | 121 | 455 | 74 | <0.001 |
Custom | Medium–High | 234 | 225 | 243 | 455 | 51 | <0.001 | |
Raw | Medium–High | −211 | −234 | −189 | 455 | −18 | <0.001 | |
Deceleration | Manufacturer | Medium–High | 79 | 77 | 81 | 453 | 66 | <0.001 |
Custom | Medium–High | 190 | 182 | 197 | 455 | 52 | <0.001 | |
Raw | Medium–High | 29 | 13 | 45 | 455 | 3.4 | <0.001 |
Effect of Intensity on Number of Efforts | ||||||
---|---|---|---|---|---|---|
Processing | Effect | Estimate (Rate of Change) | Lower 95% CI | Higher 95% CI | p | |
Acceleration | Manufacturer | Medium–High | 12.1 | 11.1 | 13.1 | <0.001 |
Custom | Medium–High | 0.71 | 0.63 | 0.79 | <0.001 | |
Raw | Medium–High | 0.83 | 0.81 | 0.85 | <0.001 | |
Deceleration | Manufacturer | Medium–High | 2.28 | 2.18 | 2.38 | <0.001 |
Custom | Medium–High | 0.30 | 0.29 | 0.31 | <0.001 | |
Raw | Medium–High | 0.66 | 0.60 | 0.72 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellens, S.; Carey, D.L.; Gastin, P.B.; Varley, M.C. Effect of Data-Processing Methods on Acceleration Summary Metrics of GNSS Devices in Elite Australian Football. Sensors 2024, 24, 4383. https://doi.org/10.3390/s24134383
Ellens S, Carey DL, Gastin PB, Varley MC. Effect of Data-Processing Methods on Acceleration Summary Metrics of GNSS Devices in Elite Australian Football. Sensors. 2024; 24(13):4383. https://doi.org/10.3390/s24134383
Chicago/Turabian StyleEllens, Susanne, David L. Carey, Paul B. Gastin, and Matthew C. Varley. 2024. "Effect of Data-Processing Methods on Acceleration Summary Metrics of GNSS Devices in Elite Australian Football" Sensors 24, no. 13: 4383. https://doi.org/10.3390/s24134383
APA StyleEllens, S., Carey, D. L., Gastin, P. B., & Varley, M. C. (2024). Effect of Data-Processing Methods on Acceleration Summary Metrics of GNSS Devices in Elite Australian Football. Sensors, 24(13), 4383. https://doi.org/10.3390/s24134383