Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adolfsson, K.; Enelund, M.; Olsson, P. On the fractional order model of viscoelasticity. Mech. Time-Depend. Mater. 2005, 9, 15–34. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng. 2004, 32, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Gorenflo, R. Fractional calculus: Some numerical methods. Courses Lect.-Int. Cent. Mech. Sci. 1997, 25, 277–290. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies Series; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Dragomir, S.S. Ostrowski type inequalities for Riemann–Liouville fractional integrals of absolutely continuous functions in terms of norms. RGMIA Res. Rep. Collect. 2017, 20, 49. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim., H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2001, 54, 2709–2717. [Google Scholar] [CrossRef]
- Rafiq, A.; Mir, N.A.; Ahmad, F. Weighted Chebysev–Ostrowski type inequalities. Appl. Math. Mech. 2007, 28, 901–906. [Google Scholar] [CrossRef]
- Fernandez, A.; Mohammed, P.O. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Meth. Appl. Sci. 2020, 44, 8414–8431. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Nasir, J.; Aydi, H.; Mukheimer, A. New Ostrowski-Type Fractional Integral Inequalities via Generalized Exponential-Type Convex Functions and Applications. Symmetry 2021, 13, 1429. [Google Scholar] [CrossRef]
- Toplu, T.; Kadkal, M.; İşcan, İ. On n-polynomial convexity and some related inequalities. AIMS Math. 2020, 5, 1304–1318. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2009, 1, 82. [Google Scholar] [CrossRef]
- Butt, S.I.; Tariq, M.; Aslam, A.; Ahmad, H.; Nofel, T.A. Hermite–Hadamard type inequalities via generalized harmonic exponential convexity. J. Funct. Spaces 2021, 2021, 5533491. [Google Scholar]
- Tariq, M. New Hermite–Hadamard type inequalities via p–harmonic exponential type convexity and applications. Univers. J. Math. Appl. 2021, 4, 59–69. [Google Scholar]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Pecaric, J.; Fink, A.M. Inequalities Involving Functions and Their Integrals and Derivatives; Springer Science and Business Media: Dordrecht, The Netherlands, 2012; Volume 53. [Google Scholar]
- Dragomir, S.S.; Wang, S. A new inequality of Ostrowski type in L1 norm and applications to some special means and to some numerical quadrature rules. Tamkang J. Math. 1997, 28, 239–244. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Wang, S. Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and for some numerical quadrature rules. Appl. Math. Lett. 1998, 11, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Barnett, N.S.; Dragomir, S.S. An Ostrowski type inequality for double integrals and applications for cubature formulae. Soochow J. Math. 2001, 27, 109–114. [Google Scholar]
- Cerone, P.; Dragomir, S.S.; Roumeliotis, J. An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications. East Asian Math. J. 1999, 15, 1–9. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s–convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. Some Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA Res. Rep. Collect. 2010, 13, 13696936. [Google Scholar]
- Dragomir, S.S. On the Ostrowski’s integral inequality for mappings with bounded variation and applications. Math. Ineq. Appl. 1998, 1, 59–66. [Google Scholar] [CrossRef]
- Pachpatte, B.G. On an inequality of Ostrowski type in three independent variables. J. Math. Anal. Appl. 2000, 249, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Sarikaya, M.Z.; Özdemir, M.E. Some Ostrowski’s type inequalities for functions whose second derivatives are s-convex in the second sense. Demonstr. Math. 2014, 47, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Tariq, M.; Nasir, J.N.; Sahoo, S.K.; Mallah, A.A. A note on some Ostrowski type inequalities via generalized exponentially convexity. J. Math. Anal. Model. 2021, 2, 1–5. [Google Scholar]
- Tariq, M.; Sahoo, S.K.; Nasir, J.; Awan, S.K. Some Ostrowski type integral inequalities using hypergeometric functions. J. Fract. Calc. Nonlinear Syst. 2021, 2, 24–41. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 2020, 60, 73–116. [Google Scholar]
- Baleanu, D.; Agarwal, R.P. Fractional calculus in the sky. Adv. Differ. Equ. 2021, 2021, 117. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 2017, 80, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New Fractional Derivatices with Non-Local and Non-Singular Kernel: Theory and Application to Heat Transfer Model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J. On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals. J. Inequal. Appl. 2013, 2013, 230. [Google Scholar] [CrossRef] [Green Version]
- Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I. Fractional Hermite-Hadamard inequalities for differentiable s–Godunova-Levin functions. Filomat 2016, 30, 3235–3241. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Generalised fractional Hermite-Hadamard inequalities involving m-convexity and (s,m)-convexity. Facta Univ. Ser. Math. Inform. 2013, 28, 107–126. [Google Scholar]
- Özcan, S.; İşcan, İ. Some new Hermite-Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019, 2019, 201. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, H.; Tariq, M.; Sahoo, S.K.; Askar, S.; Abouelregal, A.E.; Khedher, K.M. Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator. Symmetry 2021, 13, 2059. https://doi.org/10.3390/sym13112059
Ahmad H, Tariq M, Sahoo SK, Askar S, Abouelregal AE, Khedher KM. Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator. Symmetry. 2021; 13(11):2059. https://doi.org/10.3390/sym13112059
Chicago/Turabian StyleAhmad, Hijaz, Muhammad Tariq, Soubhagya Kumar Sahoo, Sameh Askar, Ahmed E. Abouelregal, and Khaled Mohamed Khedher. 2021. "Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator" Symmetry 13, no. 11: 2059. https://doi.org/10.3390/sym13112059
APA StyleAhmad, H., Tariq, M., Sahoo, S. K., Askar, S., Abouelregal, A. E., & Khedher, K. M. (2021). Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator. Symmetry, 13(11), 2059. https://doi.org/10.3390/sym13112059