Dynamic Shannon Performance in a Multiobjective Particle Swarm Optimization
Abstract
:1. Introduction
- New diversity indices inspired by physics and biologic systems.
- A good agreement of measures between the indices.
- Identification of stagnating states during the evolution.
2. Methodology and Entropy Concepts
3. Entropy Indices for Assessing the MOPSO
3.1. Particle Diversity
3.2. Front Level Heterogeneity
4. Simulations Results
4.1. Results of DTLZ Problems Optimization
4.2. Results of Optimization
4.3. Correlation Coefficient
4.4. Archive Evolution
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Qu, B.; Zhu, Y.; Jiao, Y.; Wu, M.; Suganthan, P.; Liang, J. A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems. Swarm Evol. Comput. 2018, 38, 1–11. [Google Scholar] [CrossRef]
- Kennedy, J. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison–Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Deb, K. Multi-Objective Optimization using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Coello, C.A.C.; Lechuga, M. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No.02TH8600), Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1051–1056. [Google Scholar] [CrossRef]
- Reyes-Sierra, M.; Coello, C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2006, 2, 287–308. [Google Scholar]
- Zhou, A.; Qu, B.Y.; Li, H.; Zhao, S.Z.; Suganthan, P.N.; Zhang, Q. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol. Comput. 2011, 1, 32–49. [Google Scholar] [CrossRef]
- Zhao, S.Z.; Suganthan, P.N. Two-lbests based multi-objective particle swarm optimizer. Eng. Optim. 2011, 43, 1–17. [Google Scholar] [CrossRef]
- Freire, H.; Moura Oliveira, P.B.; Solteiro Pires, E.J. From single to many-objective PID controller design using particle swarm optimization. Int. J. Control Autom. Syst. 2017, 15, 918–932. [Google Scholar] [CrossRef]
- Riquelme, N.; Lücken, C.V.; Baran, B. Performance metrics in multi-objective optimization. In Proceedings of the 2015 Latin American Computing Conference (CLEI), Arequipa, Peru, 19–23 October 2015; pp. 1–11. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Solteiro Pires, E.J.; de Moura Oliveira, P.B.; Tenreiro Machado, J.A. Multi-objective MaxiMin Sorting Scheme. In Proceedings of the Conference on Evolutionary Multi-criterion Optimization—EMO 2005, Guanajuato, Mexico, 9–11 March 2005; Lecture Notes in Computer Science Volume 3410. Springer: Guanajuanto, Mexico, 2005; pp. 165–175. [Google Scholar] [Green Version]
- Wang, L.; Chen, Y.; Tang, Y.; Sun, F. The entropy metric in diversity of Multiobjective Evolutionary Algorithms. In Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR), Dalian, China, 14–16 October 2011; pp. 217–221. [Google Scholar] [CrossRef]
- LinLin, W.; Yunfang, C. Diversity Based on Entropy: A Novel Evaluation Criterion in Multi-objective Optimization Algorithm. Int. J. Intell. Syst. Appl. 2012, 4, 113–124. [Google Scholar] [Green Version]
- Farhang-Mehr, A.; Azarm, S. Diversity assessment of Pareto optimal solution sets: An entropy approach. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC’02), Honolulu, HI, USA, 12–17 May 2002; Volume 1, pp. 723–728. [Google Scholar] [CrossRef]
- Deb, K.; Jain, S. Running Performance Metrics for Evolutionary Multi-Objective Optimization; Technical Report 2002004; Indian Institute of Technology: Kanpur, India, 2002. [Google Scholar]
- Myers, R.; Hancock, E.R. Genetic algorithms for ambiguous labelling problems. Pattern Recognit. 2000, 33, 685–704. [Google Scholar] [CrossRef]
- Solteiro Pires, E.J.; Tenreiro Machado, J.A.; de Moura Oliveira, P.B. Dynamical Modelling of a Genetic Algorithm. Signal Process. 2006, 86, 2760–2770. [Google Scholar] [CrossRef]
- Solteiro Pires, E.J.; Tenreiro Machado, J.A.; de Moura Oliveira, P.B. Entropy Diversity in Multi-Objective Particle Swarm Optimization. Entropy 2013, 15, 5475–5491. [Google Scholar] [CrossRef] [Green Version]
- Solteiro Pires, E.J.; Tenreiro Machado, J.A.; de Moura Oliveira, P.B. Diversity study of multi-objective genetic algorithm based on Shannon entropy. In Proceedings of the 2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014), Porto, Portugal, 30 July–1 August 2014; pp. 17–22. [Google Scholar] [CrossRef]
- Wu, C.; Wu, T.; Fu, K.; Zhu, Y.; Li, Y.; He, W.; Tang, S. AMOBH: Adaptive Multiobjective Black Hole Algorithm. Comput. Intell. Neurosci. 2017, 2017, 6153951. [Google Scholar] [CrossRef] [PubMed]
- Seneta, E. A Tricentenary history of the Law of Large Numbers. Bernoulli 2013, 19, 1088–1121. [Google Scholar] [CrossRef] [Green Version]
- Ben-Naim, A. Entropy and the Second Law: Interpretation and Misss-Interpretations; World Scientific Publishing Company: Singapore, 2012. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Solteiro Pires, E.J.; Tenreiro Machado, J.A.; de Moura Oliveira, P.B. Multi-objective Dynamic Analysis Using Fractional Entropy. In Intelligent Systems Design and Applications; Madureira, A.M., Abraham, A., Gamboa, D., Novais, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 448–456. [Google Scholar]
- Pielou, E.C. Shannon’s Formula as a Measure of Specific Diversity: Its Use and Misuse. Am. Nat. 1966, 100, 463–465. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Mäller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2018, 18, 3514–3524. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1963. [Google Scholar]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Multi-Objective Optimization Test Problems. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No.02TH8600), Honolulu, HI, USA, 12–17 May 2002. [Google Scholar]
- Zhang, Q.; Zhou, A.; Zhao, S.; Suganthan, P.N.; Liu, W.; Tiwari, S. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition; Technical Report CES-487; University of Essex and Nanyang Technological University: Essex, UK, 2008. [Google Scholar]
Archive Size () | Swarm Size () | |||
---|---|---|---|---|
50 | 250 | |||
300 | ||||
350 | ||||
400 | ||||
100 | 250 | |||
300 | ||||
350 | ||||
400 | ||||
150 | 250 | |||
300 | ||||
350 | ||||
400 | ||||
200 | 250 | |||
300 | ||||
350 | ||||
400 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, E.J.S.; Machado, J.A.T.; Oliveira, P.B.d.M. Dynamic Shannon Performance in a Multiobjective Particle Swarm Optimization. Entropy 2019, 21, 827. https://doi.org/10.3390/e21090827
Pires EJS, Machado JAT, Oliveira PBdM. Dynamic Shannon Performance in a Multiobjective Particle Swarm Optimization. Entropy. 2019; 21(9):827. https://doi.org/10.3390/e21090827
Chicago/Turabian StylePires, E. J. Solteiro, J. A. Tenreiro Machado, and P. B. de Moura Oliveira. 2019. "Dynamic Shannon Performance in a Multiobjective Particle Swarm Optimization" Entropy 21, no. 9: 827. https://doi.org/10.3390/e21090827
APA StylePires, E. J. S., Machado, J. A. T., & Oliveira, P. B. d. M. (2019). Dynamic Shannon Performance in a Multiobjective Particle Swarm Optimization. Entropy, 21(9), 827. https://doi.org/10.3390/e21090827