Entropy in Dynamic Systems
Conflicts of Interest
References
- Demir, K.; Ergün, S. An Analysis of Deterministic Chaos as an Entropy Source for Random Number Generators. Entropy 2018, 20, 957. [Google Scholar] [CrossRef]
- Butusov, D.; Karimov, A.; Tutueva, A.; Kaplun, D.; Nepomuceno, E.G. The effects of Padé numerical integration in simulation of conservative chaotic systems. Entropy 2019, 21, 362. [Google Scholar] [CrossRef]
- Yin, Y.; Duan, X. Information Transfer Among the Components in Multi-Dimensional Complex Dynamical Systems. Entropy 2018, 20, 774. [Google Scholar] [CrossRef]
- Ouannas, A.; Wang, X.; Khennaoui, A.; Bendoukha, S.; Pham, V.; Alsaadi, F. Fractional Form of a Chaotic Map without Fixed Points: Chaos, Entropy and Control. Entropy 2018, 20, 720. [Google Scholar] [CrossRef]
- Markechová, D.; Riečan, B. Tsallis Entropy of Product MV-Algebra Dynamical Systems. Entropy 2018, 20, 589. [Google Scholar] [CrossRef]
- Fan, C.; Ding, Q. A Novel Image Encryption Scheme Based on Self-Synchronous Chaotic Stream Cipher and Wavelet Transform. Entropy 2018, 20, 445. [Google Scholar] [CrossRef]
- Batiha, I.; El-Khazali, R.; AlSaedi, A.; Momani, S. The General Solution of Singular Fractional-Order Linear Time-Invariant Continuous Systems with Regular Pencils. Entropy 2018, 20, 400. [Google Scholar] [CrossRef]
- Awrejcewicz, J.; Krysko, A.; Erofeev, N.; Dobriyan, V.; Barulina, M.; Krysko, V. Quantifying Chaos by Various Computational Methods. Part 1: Simple Systems. Entropy 2018, 20, 175. [Google Scholar] [CrossRef]
- Awrejcewicz, J.; Krysko, A.; Erofeev, N.; Dobriyan, V.; Barulina, M.; Krysko, V. Quantifying Chaos by Various Computational Methods. Part 2: Vibrations of the Bernoulli–Euler Beam Subjected to Periodic and Colored Noise. Entropy 2018, 20, 170. [Google Scholar] [CrossRef]
- Korczak-Kubiak, E.; Loranty, A.; Pawlak, R. On Points Focusing Entropy. Entropy 2018, 20, 128. [Google Scholar] [CrossRef]
- Ding, X.; Nieto, J. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications. Entropy 2018, 20, 63. [Google Scholar] [CrossRef]
- Ding, X.-L.; Nieto, J.J. Analysis and Numerical Solutions for Fractional Stochastic Evolution Equations with Almost Sectorial Operators. J. Comput. Nonlinear Dynam. 2019, 14, 091001. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awrejcewicz, J.; Tenreiro Machado, J.A. Entropy in Dynamic Systems. Entropy 2019, 21, 896. https://doi.org/10.3390/e21090896
Awrejcewicz J, Tenreiro Machado JA. Entropy in Dynamic Systems. Entropy. 2019; 21(9):896. https://doi.org/10.3390/e21090896
Chicago/Turabian StyleAwrejcewicz, Jan, and José A. Tenreiro Machado. 2019. "Entropy in Dynamic Systems" Entropy 21, no. 9: 896. https://doi.org/10.3390/e21090896
APA StyleAwrejcewicz, J., & Tenreiro Machado, J. A. (2019). Entropy in Dynamic Systems. Entropy, 21(9), 896. https://doi.org/10.3390/e21090896