Multi-Spectral Lidar: Radiometric Calibration, Canopy Spectral Reflectance, and Vegetation Vertical SVI Profiles
Abstract
:1. Introduction
2. Data and Methods
2.1. Radiometric Calibration Targets
2.2. Radiometric Calibration Target Experimental Configuration
2.3. Study Area and Lidar Data Collection
2.4. Analysis
3. Results and Discussion
3.1. Radiometric Calibration Targets
3.2. Verification of the Intensity Normalization
3.3. Spectral Pseudo-Reflectance Derived from Titan Compared to Hyperspectral Sensor Data
3.4. Lifted Target and Below-Canopy Target Experiments
3.5. Vertical Spectral Vegetation Indices Profiles of the Lodgepole Pine Plot
3.6. Maps and Vertical Profile of Spectral Vegetation Indices
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vosselman, G.; Maas, H. Airborne and Terrestrial Laser Scanning; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Hancock, S.; Lewis, P.; Foster, M.; Disney, M.; Muller, J. Measuring forests with dual wavelength lidar: A simulation study over topography. Agric. For. Meteorol. 2012, 161, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Hopkinson, C.; Hopkinson, C.; Chasmer, L.; Gynan, C.; Mahoney, C.; Sitar, M. Multisensor and Multispectral LiDAR Characterization and Classification of a Forest Environment. Can. J. Remote Sens. 2016, 42, 501–520. [Google Scholar] [CrossRef]
- Wallace, A.; Nichol, C.; Woodhouse, I. Recovery of Forest Canopy Parameters by Inversion of Multispectral LiDAR Data. Remote Sens. 2012, 4, 509–531. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, J.; Nilsson, M.; Olsson, H. Simulating the effects of lidar scanning angle for estimation of mean tree height and canopy closure. Can. J. Remote Sens. 2003, 29, 623–632. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L.; Hall, R.J. The uncertainty in conifer plantation growth prediction from multi-temporal lidar datasets. Remote Sens. Environ. 2008, 112, 1168–1180. [Google Scholar] [CrossRef]
- Stoker, J.M.; Cochrane, M.A.; Roy, D.P. Integrating Disparate Lidar Data at the National Scale to Assess the Relationships between Height Above Ground, Land Cover and Ecoregions. Photogramm. Eng. Remote Sens. 2014, 80, 59–70. [Google Scholar] [CrossRef]
- Mahoney, C.; Hopkinson, C.; Held, A.; Simard, M. Continental-Scale Canopy Height Modeling by Integrating National, Spaceborne, and Airborne LiDAR Data. Can. J. Remote Sens. 2016, 42, 574–590. [Google Scholar] [CrossRef]
- Yu, X.W.; Hyyppä, J.; Kukko, A.; Maltamo, M.; Kaartinen, H. Change detection techniques for canopy height growth measurements using airborne laser scanner data. Photogramm. Eng. Remote Sens. 2006, 72, 1339–1348. [Google Scholar] [CrossRef]
- Bater, C.W.; Coops, N.; Gergel, S.E.; LeMay, V.; Collins, D. EEstimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing. Can. J. For. Res.-Rev. Can. De Rech. For. 2009, 39, 1080–1091. [Google Scholar] [CrossRef]
- Donoghue, D.N.M.; Watt, P.; Cox, N.J.G.; Wilson, D.J. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. Remote Sens. Environ. 2007, 110, 509–522. [Google Scholar] [CrossRef]
- Okhrimenko, M.; Coburn, C.; Hopkinson, C. Investigating Multi-Spectral Lidar Radiometry: An Overview of the Experimental Framework. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 23–27 July 2018; pp. 8745–8748. [Google Scholar]
- Karila, K.; Matikainen, L.; Puttonen, E.; Hyyppä, J. Feasibility of Multispectral Airborne Laser Scanning Data for Road Mapping. Ieee Geosci. Remote Sens. Lett. 2017, 14, 294–298. [Google Scholar] [CrossRef]
- Matikainen, L.; Karila, K.; Hyyppä, J.; Litkey, P.; Puttonen, E.; Ahokas, E. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating. Isprs J. Photogramm. Remote Sens. 2017, 128, 298–313. [Google Scholar] [CrossRef]
- Morsy, S.; Shaker, A.; El-Rabbany, A. Multispectral LiDAR Data for Land Cover Classification of Urban Areas. Sensors 2017, 17, 958. [Google Scholar] [CrossRef]
- Morsy, S.; Shaker, A.; El-Rabbany, A.; LaRocque, P.E. Airborne Multispectral Lidar Data for Land-Cover Classification and Land/Water Mapping Using Different Spectral Indexes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 217–224. [Google Scholar] [CrossRef]
- Budei, B.C.; St-Onge, B.; Hopkinson, C.; Audet, F. Identifying the genus or species of individual trees using a three-wavelength airborne lidar system. Remote Sens. Environ. 2018, 204, 632–647. [Google Scholar] [CrossRef]
- Hancock, S.; Gaulton, R.; Danson, F.M. Angular Reflectance of Leaves With a Dual-Wavelength Terrestrial Lidar and Its Implications for Leaf-Bark Separation and Leaf Moisture Estimation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3084–3090. [Google Scholar] [CrossRef] [Green Version]
- Morsdorf, F.; Nichol, C.; Malthus, T.; Woodhouse, I. Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling. Remote Sens. Environ. 2009, 113, 2152–2163. [Google Scholar] [CrossRef] [Green Version]
- Woodhouse, I.H.; Nichol, C.; Sinclair, P.; Jack, J.; Morsdorf, F.; Malthus, T.; Patenaude, G. A Multispectral Canopy LiDAR Demonstrator Project. Ieee Geosci. Remote Sens. Lett. 2011, 8, 839–843. [Google Scholar] [CrossRef]
- Yan, W.Y.; Shaker, A.; Habib, A.; Kersting, A.P. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. Isprs J. Photogramm. Remote Sens. 2012, 67, 35–44. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Hyyppä, H.; Kukko, A.; Litkey, P. Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets. Ieee Trans. Geosci. Remote Sens. 2009, 47, 588–598. [Google Scholar] [CrossRef]
- Vain, A.; Kaasalainen, S.; Pyysalo, U.; Krooks, A.; Litkey, P. Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data. Sensors 2009, 9, 2780–2796. [Google Scholar] [CrossRef] [PubMed]
- Vain, A.; Yu, X.; Kaasalainen, S.; Hyyppä, J. Correcting Airborne Laser Scanning Intensity Data for Automatic Gain Control Effect. Ieee Geosci. Remote Sens. Lett. 2010, 7, 511–514. [Google Scholar] [CrossRef]
- Milenkovic, M. Total canopy transmittance estimated from small-footprint, full-waveform airborne LiDAR. Isprs J. Photogramm. Remote Sens. 2017, 128, 61–72. [Google Scholar] [CrossRef]
- Kashani, A.G.; Olsen, M.J.; Parrish, C.; Wilson, N. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration. Sensors 2015, 15, 28099–28128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, S.D.; Boeré, A.; Kondratowicz, T.; Crowe, T.G.; Brown, R.B.; Naylor, D.A. Characterization of a low-cost diffuse reflectance coating. Can. J. Remote Sens. 2008, 34, 68–76. [Google Scholar] [CrossRef]
- Vain, A.; Kaasalainen, S.; Hyyppä, J.; Ahokas, E. Calibration of laser scanning intensity data using brightness targets. The method developed by the Finnish Geodetic Institute. Geod. Ir Kartogr. 2009, 35, 77–81. [Google Scholar] [CrossRef]
- Beaty, C.B. The Landscapes of Southern Alberta; The University of Lethbridge: Lethbridge, AL, Canada, 1975. [Google Scholar]
- Fernandez-Diaz, J.C.; Carter, W.; Glennie, C.; Shrestha, R.; Pan, Z.; Ekhtari, N.; Singhania, A.; Hauser, D.; Singhania, A. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sens. 2016, 8, 936. [Google Scholar] [CrossRef]
- Okhrimenko, M.; Hopkinson, C. The consistency of uncalibrated multispectral lidar vegetation indices at different altitudes. Remote Sens. 2019, 11, 1531. [Google Scholar] [CrossRef]
- Yan, W.Y.; Shaker, A. Airborne LiDAR intensity banding: Cause and solution. Isprs J. Photogramm. Remote Sens. 2018, 142, 301–310. [Google Scholar] [CrossRef]
- CSRS. PPP Service. 2017. Available online: https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en (accessed on 15 September 2017).
- Kokaly, R.F.; Despain, D.G.; Clark, R.N.; Livo, K.E. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sens. Environ. 2003, 84, 437–456. [Google Scholar] [CrossRef] [Green Version]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. Lodgepole-Pine LP-Needles-1. In USGS Spectral Library, Version 7: U.S. Geological Survey Data Series 1035; 2017; p. 61. [Google Scholar] [CrossRef]
- Korpela, I. Acquisition and evaluation of radiometrically comparable multi-footprint airborne LiDAR data for forest remote sensing. Remote Sens. Environ. 2017, 194, 414–423. [Google Scholar] [CrossRef] [Green Version]
- Koch, B.; Kattenborn, T.; Straub, C.; Vauhkonen, J. Segmentation of Forest to Tree Objects, Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies; Springer: Heidelberg, Germany, 2014; Volume 27, pp. 89–112. [Google Scholar]
- Okhrimenko, M.; Grabarnik, P. Segmentation of LiDAR points in forest environment based on unidirected graphs. In Proceedings of the VII International Conference Mathematical Biology and Bioinformatics, Puschino, Russia, 14–19 October 2016. [Google Scholar]
Channel | Wavelength | Forward Tilt | Divergence (1/e) | Divergence (1/e)2 | Footprint Diameter (1/e)2 at 600 m |
---|---|---|---|---|---|
C1 | 1550 nm | 3.5° | 0.35 mrad | 0.5 mrad | 30 cm |
C2 | 1064 nm | 0.0° | 0.35 mrad | 0.5 mrad | 30 cm |
C3 | 532 nm | 7.0° | 0.7 mrad | 1.0 mrad | 60 cm |
Channel | C3 | C2 | C1 |
---|---|---|---|
Wavelength | 532 nm | 1064 nm | 1550 nm |
Point density | ~4.5/2.7 | ~6.8/2.9 | ~5.8/2.9 |
Wavelength | C3 (532 nm) | C2 (1064 nm) | C1 (1550 nm) |
---|---|---|---|
Spectral reflectance % | 95.5 (0.1) | 95.0 (0.5) | 90.5 (0.9) |
Observations | C3 (532 nm) | C2 (1064 nm) | C1 (1550 nm) |
---|---|---|---|
DN normalized to 100% spectral reflectance (600 m) | 3068 (116 | 3) | 3151 (52 | 5) | 3267 (145 | 6) |
Cross line spectral reflectance validation % | 93.4 (1.8 | 4) | 96.4 (2.9 | 5) | 91.0 (1.4 | 5) |
Observations | Pixel Size | N | C3 (532 nm) | C2 (1064 nm) | C1 (1550 nm) | ||
---|---|---|---|---|---|---|---|
Titan All LP, % | 15 m | 150 | 3.4 (0.5) | 27.7 (3.3) | 18.2 (2.8) | 0.12 (0.01) | 0.66 (0.07) |
Vs. AVIRIS | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ||
Vs. Aisa Dual | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ||
Titan Canopy LP, % | 15 m | 150 | 2.5 (0.1) | 17.6 (0.7) | 8.4 (0.3) | 0.14 (0.01) | 0.48 (0.02) |
Vs. AVIRIS | p = 0.09 | p < 0.05 | p = 0.51 | p = 1 | p = 0.39 | ||
Vs. Aisa Dual | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ||
AVIRIS YNP-LP1, % | 15 m | 4 | 2.3 (0.5) | 15.3 (0.9) | 8.0 (1.4) | 0.15 (0.02) | 0.52 (0.07) |
AISA Dual Pines, % | 2 m | 37 | 5.5 (0.7) | 31.5 (5.4) | 10.7 (2.8) | 0.18 (0.02) | 0.34 (0.08) |
ASD LP, % | * | 1 | 19.2 (5.0) | 67.1 (2.3) | 38.4 (3.9) | 0.28 | 0.57 |
Channel | C3 (532 nm) | C2 (1064 nm) | C1 (1550 nm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Double returns observations | first | last | first | last | first | last | |||
953 | 1381 | 79.7% | 2162 | 430 | 86.6% | 1369 | 1277 | 84.4% | |
1265 | 1001 | 77.3% | 1224 | 1240 | 82.3% | 1344 | 1198 | 81.0% | |
1333 | 824 | 73.6% | 1314 | 1192 | 83.7% | 1778 | 1101 | 91.8% | |
1776 | 816 | 86.6% | |||||||
Average loss | 23.1% | 15.2% | 14.3% |
Observations | C3 (532 nm) | C2 (1064 nm) | C1 (1550 nm) |
---|---|---|---|
Below-canopy target single return hit, DN | 942 | 2838 | 3054 |
Open target, DN | 2930 | 2994 | 3136 |
Loss | 68% | 5% | 3% |
Channel | Target Hit | First return Backscatter | Intermediate Return Backscatter | ||
---|---|---|---|---|---|
C1 | 1 | 8.5% | 6.0% | 2.5% | 1% |
2 | 12.0% | 12.0% | 64% | ||
3 | 12.1% | 9.7% | 2.4% | 3% | |
4 | 18.1% | 12.1% | 6.0% | 29% | |
5 | 11.4% | 3.9% | 7.5% | 57% | |
C2 | 1 | 21.8% | 21.8% | 54% | |
C3 | 1 | 2.6% | 1.3% | 1.3% | 11% |
2 | 2.2% | 2.2% | 8% | ||
3 | 2.4% | 1.3% | 1.1% | 20% | |
4 | 3.1% | 3.1% | 18% | ||
5 | 1.4% | 1.4% | 27% | ||
6 | 1.9% | 1.9% | 29% |
C1 | C2 | C1 | |
---|---|---|---|
C1 | - | 0.068 (0.46) | 0.138 (<0.01) |
C2 | 0.053 (0.89) | - | 0.173 (<0.01) |
C3 | 0.085 (0.19) | 0.081 (0.33) | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhrimenko, M.; Coburn, C.; Hopkinson, C. Multi-Spectral Lidar: Radiometric Calibration, Canopy Spectral Reflectance, and Vegetation Vertical SVI Profiles. Remote Sens. 2019, 11, 1556. https://doi.org/10.3390/rs11131556
Okhrimenko M, Coburn C, Hopkinson C. Multi-Spectral Lidar: Radiometric Calibration, Canopy Spectral Reflectance, and Vegetation Vertical SVI Profiles. Remote Sensing. 2019; 11(13):1556. https://doi.org/10.3390/rs11131556
Chicago/Turabian StyleOkhrimenko, Maxim, Craig Coburn, and Chris Hopkinson. 2019. "Multi-Spectral Lidar: Radiometric Calibration, Canopy Spectral Reflectance, and Vegetation Vertical SVI Profiles" Remote Sensing 11, no. 13: 1556. https://doi.org/10.3390/rs11131556
APA StyleOkhrimenko, M., Coburn, C., & Hopkinson, C. (2019). Multi-Spectral Lidar: Radiometric Calibration, Canopy Spectral Reflectance, and Vegetation Vertical SVI Profiles. Remote Sensing, 11(13), 1556. https://doi.org/10.3390/rs11131556