Attributing the Impacts of Vegetation and Climate Changes on the Spatial Heterogeneity of Terrestrial Water Storage over the Tibetan Plateau
Abstract
:1. Introduction
2. Study Area and Data Description
2.1. Study Area
2.2. Data Description
2.2.1. Global Land Data Assimilation System (GLDAS)
2.2.2. China Meteorological Forcing Dataset (CMFD)
2.2.3. The Third-Generation Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS NDVI3g)
2.2.4. Other Datasets
3. Methodology
3.1. Calculation of the Terrestrial Water Storage
3.2. Sen’s Slope and Mann–Kendall Trend Test
3.3. Geostatistical Methods
4. Results and Analysis
4.1. Spatiotemporal Heterogeneity of the TWS over the Tibetan Plateau
4.1.1. Interannual Variations of the TWS
4.1.2. Intra-Annual Variations of the TWS
4.2. Components Analysis of the TWS over the Tibetan Plateau
4.2.1. Spatial Distributions of Each Component
4.2.2. Spatiotemporal Variabilities of Each Component
4.3. Impacts of Hydrological Cycle on the TWS
4.3.1. Characteristics of the Hydrological Cycle Components
4.3.2. Relationship between the Hydrological Cycle and the TWS
5. Discussion
5.1. Climate Change and Water Resources Security
5.2. Water Conservation Capacity of Vegetation over the Tibetan Plateau
5.3. Contribution, Uncertainty Analysis and Limitations of Current Study
6. Conclusions
- (1)
- The TWS of the whole Tibetan Plateau increased at the speed of 0.7 mm/yr and gradually increased from north to south during the period 1981–2015. In most of the areas, the TWS value was between 300 mm and 600 mm. In the northern Tibetan Plateau, the TWS was low and characterized by stability within the year and obvious accumulation in the interannual scale. While in the south of the Tibetan Plateau, the high and decreased values distributed with apparently intra-annual fluctuations.
- (2)
- In most areas, the TWS mainly consisted of soil moisture, which was 0–200 cm underground and occupied a percentage of more than 90% in the TWS. The plant canopy surface water increased from northwest to southeast, only accounting for 0–0.04% of the TWS. The soil moisture had the similar changing trend with the TWS, which increased in the north and decreased in the southern regions. Additionally, in the regions near Mount Everest, the proportion of snow water equivalent in the TWS can reach up to 98.22%.
- (3)
- The precipitation, evapotranspiration, and runoff over the Tibetan Plateau had obviously spatial heterogeneity and gradually increased from north to south. The precipitation over the northern and northeastern Tibetan Plateau was mainly lost through evapotranspiration with the runoff coefficient lower than 0.2, while in the Himalayas, northeastern Yarlung Zangbo River Basin, and the northwest corner of the Tibetan Plateau, the runoff coefficients were larger than 1.0 due to the influence of snow melting.
- (4)
- Apart from the positive correlation between soil moisture and temperature in the Yangtze River, Yellow River, and Lancang River source regions, the soil moisture in other regions of the Tibetan Plateau was more affected by precipitation than temperature. Both the NDVI and TWS presented a significantly increasing trend in the northern Tibet Plateau, while in the source regions of the rivers over the Tibet Plateau, such as the Yangtze River, Yellow River, Lancang River, Indus River, and Yarlung Zangbo River, the NDVI and TWS always showed opposite changing characteristics.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Ren, G.; Shi, G.; Gong, P.; Zheng, X.; Zhai, P.; Zhang, D.; Zhao, Z.; Wang, S.; Wang, H.; et al. China’s National Assessment Report on Climate Change (I): Climate change in China and the future trend. Adv. Clim. Chang. Res. 2007, 3, 1–5. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021.
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 2020, 7, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Fu, Q.; Fang, S.; Wu, J.; He, P.; Quan, Z. Effects of rapid urbanization on vegetation cover in the metropolises of China over the last four decades. Ecol. Indic. 2019, 107, 105458. [Google Scholar] [CrossRef]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhou, W.; Yan, K.; Zhang, X. Response of the water conservation function to vegetation dynamics in the Qinghai–Tibetan Plateau based on MODIS products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1675–1686. [Google Scholar] [CrossRef]
- Sun, S.; Bao, C.; Tang, Z. Tele-connecting water consumption in Tibet: Patterns and socio-economic driving factors for virtual water trades. J. Clean. Prod. 2019, 233, 1250–1258. [Google Scholar] [CrossRef]
- Zhan, P.; Song, C.; Luo, S.; Ke, L.; Liu, K.; Chen, T. Investigating different timescales of terrestrial water storage changes in the northeastern Tibetan Plateau. J. Hydrol. 2022, 608, 127608. [Google Scholar] [CrossRef]
- Zou, Y.; Kuang, X.; Feng, Y.; Jiao, J.J.; Liu, J.; Wang, C.; Fan, L.; Wang, Q.; Chen, J.; Ji, F.; et al. Solid Water Melt Dominates the Increase of Total Groundwater Storage in the Tibetan Plateau. Geophys. Res. Lett. 2022, 49, 1–14. [Google Scholar] [CrossRef]
- National Climate Center of China Meteorological Administration. Blue Book on Climate Change in China 2021; Science Press: Beijing, China, 2021.
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Hao, S.; Zhu, F.; Cui, Y. Land use and land cover change detection and spatial distribution on the Tibetan Plateau. Sci. Rep. 2021, 11, 7531. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, D.; Shen, M.; Xu, X.; Yang, X.; Huang, W.; Yu, L.; Liu, L.; Li, C.; Li, X.; et al. Contrasting Effects of Temperature and Precipitation on Vegetation Greenness along Elevation Gradients of the Tibetan Plateau. Remote Sens. 2020, 12, 2751. [Google Scholar] [CrossRef]
- Meng, F.; Su, F.; Li, Y.; Tong, K. Changes in Terrestrial Water Storage during 2003–2014 and possible causes in Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 2909–2931. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wang, L.; Zhu, L.; Li, X. Terrestrial water storage regime and its change in the endorheic Tibetan Plateau. Sci. Total Environ. 2022, 815, 152729. [Google Scholar] [CrossRef]
- Hu, B.; Wang, L.; Li, X.; Zhou, J.; Pan, Y. Divergent Changes in Terrestrial Water Storage Across Global Arid and Humid Basins. Geophys. Res. Lett. 2021, 48, 1–11. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L.; et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, S.; Yin, J.; Ning, Z.; Zeng, Z.; Wang, R. Projected changes in terrestrial water storage and associated flood potential across the Yangtze River basin. Sci. Total Environ. 2022, 817, 152998. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, S.; Yi, Y.; Xie, F.; Grünwald, R.; Miao, W.; Wu, K.; Qi, M.; Gao, Y.; Singh, D. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions. Sci. Total Environ. 2021, 799, 149366. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Reager, J.T.; Yao, F.; Famiglietti, J.S.; Sheng, Y.; Macdonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zhang, Z.; Sang, Y.-F.; Qian, J.; Feng, W.; Chen, X.; Zhou, Q. Temporal and spatial variations in the terrestrial water storage across Central Asia based on multiple satellite datasets and global hydrological models. J. Hydrol. 2021, 596, 126013. [Google Scholar] [CrossRef]
- Lv, M.; Ma, Z.; Li, M.; Zheng, Z. Quantitative Analysis of Terrestrial Water Storage Changes Under the Grain for Green Program in the Yellow River Basin. J. Geophys. Res. Atmos. 2019, 124, 1336–1351. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.; Zeng, X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2012, 117, d05102. [Google Scholar] [CrossRef]
- Lehmann, F.; Vishwakarma, B.D.; Bamber, J. How well are we able to close the water budget at the global scale? Hydrol. Earth Syst. Sci. 2022, 26, 35–54. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Goïta, K. Mapping terrestrial water storage changes in Canada using GRACE and GRACE-FO. Sci. Total Environ. 2021, 779, 146435. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Swenson, S.; Zlotnicki, V.; Velicogna, I. Time-variable gravity from GRACE: First results. Geophys. Res. Lett. 2004, 31, L11501. [Google Scholar] [CrossRef] [Green Version]
- Muskett, R.R. GRACE equivalent water mass balance of the Himalayas and Tibet Plateau region. In EGU General Assembly; EGU: Vienna, Austria, 2008. [Google Scholar]
- Moiwo, J.P.; Yang, Y.; Tao, F.; Lu, W.; Han, S. Water storage change in the Himalayas from the Gravity Recovery and Climate Experiment (GRACE) and an empirical climate model. Water Resour. Res. 2011, 47, W07521. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.J.; Zhang, X.; Liu, Y.; Kuang, X. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data. PLoS ONE 2015, 10, e0141442. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Wang, H.; Steffen, H.; Wu, P.; Jia, L.; Jiang, L.; Shen, Q. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 2016, 449, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.S.; Rathnam, E.V.; Sridhar, V. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India. Sci. Total Environ. 2021, 763, 142994. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Feng, Q.; Yin, Z.; Wen, X.; Si, J.; Li, C.; Deo, R.C. Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China. Hydrol. Process. 2017, 31, 1100–1112. [Google Scholar] [CrossRef]
- Lorenz, C.; Kunstmann, H.; Devaraju, B.; Tourian, M.J.; Sneeuw, N.; Riegger, J. Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances. J. Hydrometeorol. 2014, 15, 2111–2139. [Google Scholar] [CrossRef]
- Yang, P.; Chen, Y. An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan Mountains and its adjacent areas, central Asia. Quat. Int. 2015, 358, 106–112. [Google Scholar] [CrossRef]
- Weber, M.; Koch, F.; Bernhardt, M.; Schulz, K. The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments. Hydrol. Earth Syst. Sci. 2021, 25, 2869–2894. [Google Scholar] [CrossRef]
- Solander, K.C.; Newman, B.D.; de Araujo, A.C.; Barnard, H.R.; Berry, Z.C.; Bonal, D.; Bretfeld, M.; Burban, B.; Candido, L.A.; Célleri, R.; et al. The pantropical response of soil moisture to El Niño. Hydrol. Earth Syst. Sci. 2020, 24, 2303–2322. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Miralles, D.G.; Reichle, R.H.; Dorigo, W.A.; Hahn, S.; Sheffield, J.; Karthikeyan, L.; Balsamo, G.; Parinussa, R.M.; et al. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrol. Earth Syst. Sci. 2021, 25, 17–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Liu, L.; Zheng, D. Redetermine the region and boundaries of Tibetan Plateau. Geogr. Res. 2021, 40, 1543–1553. (In Chinese) [Google Scholar]
- Shen, M.; Piao, S.; Cong, N.; Zhang, G.; Jassens, I.A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Chang. Biol. 2015, 21, 3647–3656. [Google Scholar] [CrossRef] [Green Version]
- Qiao, B.; Zhu, L.; Yang, R. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Shi, X.; Yu, D.; Warner, E.; Petersen, G. A framework for the 1:1,000,000 Soil Database of China. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002; pp. 1–5. [Google Scholar]
- Hansen, M.; DeFries, R.; Townshend, J.; Sohiberg, R. Specify 1 Degree, 8 km, or 1 km Land Cover Classification Derived from AVHRR; The Global Land Cover Facility, University of Maryland: College Park, MD, USA, 1998. [Google Scholar]
- Liu, H.; Mi, Z.; Lin, L.; Wang, Y.; Zhang, Z.; Zhang, F.; Wang, H.; Liu, L.; Zhu, B.; Cao, G.; et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA 2018, 115, 4051–4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, Y.; Wang, L.; Zeng, T.; Ge, C.; Li, H. “One belt, one road” boundary map of key basins in Asia. National Tibetan Plateau Data Center 2020. In Proceedings of the 22nd EGU General Assembly, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, U.; Jambor, J.; Gottschalck, K.; Mitchell, C.; Meng, K.; Arsenault, A.; Cosgrove, J.; Radakovich, M.; Bosilovich, J.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Feng, Q.; Adamowski, J.F.; Alizadeh, M.R.; Yin, Z.; Wen, X.; Zhu, M. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains. Sci. Total Environ. 2021, 759, 143532. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Guo, X.; Yao, T.; Zhu, M.; Wang, Y. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim. Dyn. 2016, 47, 805–815. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhang, Y.; Guo, Y.; Li, X.; Liu, W. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling. Water Resour. Res. 2015, 51, 8060–8086. [Google Scholar] [CrossRef] [Green Version]
- Kumari, N.; Srivastava, A.; Dumka, U. A long-term spatiotemporal analysis of vegetation greenness over the Himalayan Region using Google Earth Engine. Climate 2021, 9, 109. [Google Scholar] [CrossRef]
- Shahzaman, M.; Zhu, W.; Bilal, M.; Habtemicheal, B.; Mustafa, F.; Arshad, M.; Ullah, I.; Ishfaq, S.; Iqbal, R. Remote sensing indices for spatial monitoring of agricultural drought in south Asian countries. Remote Sens. 2021, 13, 2059. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [Green Version]
- de Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, F.; Bu, L.; Wang, Q.; Ali, A.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-year comparison of CO2 concentration from NOAA carbon tracker reanalysis model with data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. [Google Scholar] [CrossRef]
- Mustafa, F.; Wang, H.; Bu, L.; Wang, Q.; Shahzaman, M.; Bilal, M.; Zhou, M.; Iqbal, R.; Aslam, R.; Ali, A.; et al. Validation of GOSAT and OCO-2 against in situ aircraft measurements and comparison with carbon tracker and GEOS-Chem over Qinhuangdao, China. Remote Sens. 2021, 13, 899. [Google Scholar] [CrossRef]
- Qu, C.; Hao, X.; Qu, J.J. Monitoring extreme agricultural drought over the Horn of Africa (HOA) using remote sensing measurements. Remote Sens. 2019, 11, 902. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1990. [Google Scholar]
- Sen, K.P. Estimates of the regression coefficient based on Kendall tau. J. Am. Stat. Assoc. 1968, 324, 1379–1389. [Google Scholar] [CrossRef]
- da Silva, R.M.; Santos, C.A.G.; Moreira, M.; Corte-Real, J.; Silva, V.C.L.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Joshi, N.; Gupta, D.; Suryavanshi, S.; Adamowski, J.; Madramootoo, C.A. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach. Atmos. Res. 2016, 182, 200–220. [Google Scholar] [CrossRef]
- Pearson, K. Notes on the history of correlation. Biometrika 1920, 13, 25–45. [Google Scholar] [CrossRef]
- Zuo, D.; Han, Y.; Xu, Z.; Li, P.; Ban, C.; Sun, W.; Pang, B.; Peng, D.; Kan, G.; Zhang, R.; et al. Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China. J. Hydrol. 2021, 600, 126532. [Google Scholar] [CrossRef]
- Papagiannopoulou, C.; Miralles, D.G.; Dorigo, W.A.; Verhoest, N.E.C.; Depoorter, M.; Waegeman, W. Vegetation anomalies caused by antecedent precipitation in most of the world. Environ. Res. Lett. 2017, 12, 074016. [Google Scholar] [CrossRef]
- Wang, H.; He, B.; Zhang, Y.; Huang, L.; Chen, Z.; Liu, J. Response of ecosystem productivity to dry/wet conditions indicated by different drought indices. Sci. Total Environ. 2018, 612, 347–357. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhao, X.; Liang, S.L.; Zhou, T.; Huang, K.C.; Tang, B.J.; Zhao, W.Q. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Bao, G.; Qin, Z.; Bao, Y.; Zhou, Y.; Li, W.; Sanjjav, A. NDVI-based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Stoffel, M. Assessing the impacts of climatic change on mountain water resources. Sci. Total Environ. 2014, 493, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, W.; Woods, R.A.; Shao, Q. Hydrological effects of change in vegetation components across global catchments. J. Hydrol. 2020, 595, 125775. [Google Scholar] [CrossRef]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; López-Moreno, J.I.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Hao, C.; Niu, C.; Qiu, Y.; Du, J.; Xu, F.; Liu, H. Spatio-temporal variations of precipitation and runoff and analyses of water-heat-human-land matching characteristics in typical mountainous areas of China. Acta Geogr. Sin. 2019, 74, 2288–2302. (In Chinese) [Google Scholar]
- Zhang, H.; Zhang, L.L.; Li, J.; An, R.D.; Deng, Y. Monitoring the spatiotemporal terrestrial water storage changes in the Yarlung Zangbo River Basin by applying the P-LSA and EOF methods to GRACE data. Sci. Total Environ. 2020, 713, 136274. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Hu, Q.; Liu, J. Responses of terrestrial water storage to climate variation in the Tibetan Plateau. J. Hydrol. 2020, 584, 124652. [Google Scholar] [CrossRef]
- Dimri, A.P.; Palazzi, E.; Daloz, A.S. Elevation dependent precipitation and temperature changes over Indian Himalayan region. Clim. Dyn. 2022, 59, 1–21. [Google Scholar] [CrossRef]
- Krishnan, R.; Shrestha, A.B.; Ren, G.; Rajbhandari, R.; Saeed, S.; Sanjay, J.; Syed, A.; Vellore, R.; Xu, Y.; You, Q.; et al. Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. In The Hindu Kush Himalaya Assessment; Springer International Publishing: Cham, Switzerland, 2019; pp. 57–97. [Google Scholar] [CrossRef] [Green Version]
- Ohmura, A. Enhanced temperature variability in high-altitude climate change. Theor. Appl. Clim. 2012, 110, 499–508. [Google Scholar] [CrossRef]
- Palazzi, E.; von Hardenberg, J.; Provenzale, A. Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos. 2013, 118, 85–100. [Google Scholar] [CrossRef]
- Salerno, F.; Guyennon, N.; Thakuri, S.; Viviano, G.; Romano, E.; Vuillermoz, E.; Cristofanelli, P.; Stocchi, P.; Agrillo, G.; Ma, Y.; et al. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosphere 2015, 9, 1229–1247. [Google Scholar] [CrossRef] [Green Version]
- Pepin, N.C.; Arnone, E.; Gobiet, A.; Haslinger, K.; Kotlarski, S.; Notarnicola, C.; Palazzi, E.; Seibert, P.; Serafin, S.; Schöner, W.; et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 2022, 60, 1–40. [Google Scholar] [CrossRef]
Type | Data | Description | Source | Postscript |
---|---|---|---|---|
Meteorological data | Global Land Data Assimilation System (GLDAS) | 1948–present, 0.25°, 1° | Goddard Earth Science Data and Information Service Center | https://disc.gsfc.nasa.gov/ (accessed on 10 October 2021). |
China Meteorological Forcing Dataset (CMFD) | 1979–2018, 0.1° | National Tibetan Plateau Data Center | http://data.tpdc.ac.cn (accessed on 20 November 2021). | |
Underlying surface data | Digital Elevation Model | 2000, 90 m | Resource and Environmental Science Data Center of the Chinese Academy of Sciences | https://www.resdc.cn/ (accessed on15 January 2020). |
Soil Database of China | 2002, 1:1,000,000 | Institute of Soil Science, Chinese Academy of Sciences | http://www.issas.ac.cn/ (accessed on 5 December 2022). | |
Land Cover Classification | 1998, 1 km | University of Maryland | http://www.landcover.org/data/landcover/data.shtml (accessed on 5 December 2022). | |
GIMMS NDVI3g | 1981–2015, 0.083° | National Aeronautics and Space Administration | https://ecocast.arc.nasa.gov/data/pub/gimms/ (accessed on 2 February 2020). |
Method | Description |
---|---|
Calculation of the terrestrial water storage (TWS) | Based on the water balance equation, the GLDAS was adopted to calculate the TWS and further determinate the water resources over the Tibetan Plateau. It can provide the basic information for the characteristic analysis and the changing mechanism of the TWS and its components under the influences of hydrological cycle. |
Sen’s slope and Mann–Kendall trend test | Appling the non-parametric methods investigated the spatiotemporal variabilities of the TWS and its different components, climatic elements, and vegetation cover over the Tibetan Plateau from 1981 to 2015. |
Geostatistical methods | To identify the changing mechanism of TWS and the water conservation capacity of vegetation in the sub-regions scale over the Tibetan Plateau, the Pearson correlation analysis, extracted by attributes and zonal statistics, etc., was used to filter and analyze the data. |
Changing Trend | p Value | Significance |
---|---|---|
slope > 0 | p < 0.01 | extremely significant increase |
0.01 < p < 0.05 | significant increase | |
0.05 < p < 0.1 | weak significant increase | |
p > 0.1 | non-significant increase | |
slope < 0 | p < 0.01 | extremely significant decrease |
0.01 < p < 0.05 | significant decrease | |
0.05 < p < 0.1 | weak significant decrease | |
p > 0.1 | non-significant decrease |
Province | City/Region | NDVI | TWS/mm | Province | City/Region | NDVI | TWS/mm |
---|---|---|---|---|---|---|---|
Xinjiang | Kunyu | 0.11 | 336.86 | Gansu | Jinchang | 0.14 | 475.64 |
Kashgar Region | 0.34 | 340.15 | Hui nationality of Linxia | 0.78 | 484.91 | ||
Kizilsuk | 0.10 | 373.65 | Longnan | 0.74 | 491.72 | ||
Hotan Region | 0.15 | 418.12 | Tibet | Nyingchi | 0.60 | 526.89 | |
Babingolemont | 0.17 | 421.54 | Shigatse | 0.50 | 527.45 | ||
Qinghai | Tibetan of Huangnan | 0.60 | 290.98 | Lhasa | 0.68 | 538.46 | |
Haidong | 0.69 | 309.20 | Ali Region | 0.27 | 540.11 | ||
Tibetan of Hainan | 0.74 | 349.08 | Shannan | 0.72 | 546.74 | ||
Tibetan of Haibei | 0.57 | 366.52 | Nagqu | 0.64 | 565.96 | ||
Tibetan of Guoluo | 0.51 | 370.43 | Qamdo | 0.26 | 608.67 | ||
Xining | 0.79 | 428.01 | Yunnan | Lisu nationality of Nujiang | 0.68 | 498.59 | |
Mongolian of Haixi | 0.43 | 430.65 | Lijiang | 0.72 | 519.74 | ||
Tibetan of Yushu | 0.62 | 436.95 | Tibetan of Diqing | 0.82 | 541.93 | ||
Gansu | Tianshui | 0.46 | 304.31 | Sichuan | Yi nationality of Liangshan | 0.70 | 499.17 |
Dingxi | 0.13 | 304.98 | Tibetan of Ganzi | 0.79 | 509.76 | ||
Jiuquan | 0.39 | 310.58 | Ya an | 0.87 | 535.93 | ||
Zhangye | 0.54 | 322.19 | Tibetan of Aba | 0.82 | 553.87 | ||
Tibetan of Gannan | 0.70 | 392.12 | Mianyang | 0.68 | 662.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Zuo, D.; Xu, Z.; Wang, G.; Peng, D.; Pang, B.; Yang, H. Attributing the Impacts of Vegetation and Climate Changes on the Spatial Heterogeneity of Terrestrial Water Storage over the Tibetan Plateau. Remote Sens. 2023, 15, 117. https://doi.org/10.3390/rs15010117
Han Y, Zuo D, Xu Z, Wang G, Peng D, Pang B, Yang H. Attributing the Impacts of Vegetation and Climate Changes on the Spatial Heterogeneity of Terrestrial Water Storage over the Tibetan Plateau. Remote Sensing. 2023; 15(1):117. https://doi.org/10.3390/rs15010117
Chicago/Turabian StyleHan, Yuna, Depeng Zuo, Zongxue Xu, Guoqing Wang, Dingzhi Peng, Bo Pang, and Hong Yang. 2023. "Attributing the Impacts of Vegetation and Climate Changes on the Spatial Heterogeneity of Terrestrial Water Storage over the Tibetan Plateau" Remote Sensing 15, no. 1: 117. https://doi.org/10.3390/rs15010117
APA StyleHan, Y., Zuo, D., Xu, Z., Wang, G., Peng, D., Pang, B., & Yang, H. (2023). Attributing the Impacts of Vegetation and Climate Changes on the Spatial Heterogeneity of Terrestrial Water Storage over the Tibetan Plateau. Remote Sensing, 15(1), 117. https://doi.org/10.3390/rs15010117