Bayesian Direction of Arrival Estimation with Prior Knowledge from Target Tracker
Abstract
:1. Introduction
- The Bayesian DOA estimation problem is formed by combining the multiple snapshots from observation and the prior knowledge from target tracker. By deriving the BCRLB and ECRLB, the relationship between the observation information and prior knowledge is analyzed.
- The MAP estimator is constructed and two methods are proposed. One is a two-step grid search method for a single target DOA case. The other is a gradient-based iterative solution for multiple targets DOA case, which extends the traditional Newton method by incorporating the prior knowledge.
- The MMSE estimator is constructed. Considering the multidimensional integration is difficult to calculate, the Monte Carlo method is proposed to estimate the integration.
- By comparing with the ML estimators and the MUSIC algorithm, the performance improvement achieved by the proposed three Bayesian estimators is demonstrated in different simulation settings.
2. Signal Model and Prior Knowledge
2.1. Signal Model for ULA
2.2. Prior Knowledge from the Tracker
3. Cramér–Rao Lower Bounds
3.1. Bayesian CRLB
3.2. Expected CRLB
4. Bayesian DOA Estimation Methods with Prior Knowledge
4.1. MAP Estimator Using Grid Search
Algorithm 1 MAP estimator for single target using grid search |
Input: The observation vector and noise covariance matrix , the prior knowledge and Output: An estimate |
4.2. MMSE Estimator Using Monte Carlo Method
Algorithm 2 MMSE estimator for multiple targets using the Monte Carlo method |
Input: The observation vector and noise covariance matrix , the prior knowledge and Output: An estimate
|
4.3. Iterative Solution Based on the MAP Estimator
4.3.1. Gradient-Based Iterative Solution
Algorithm 3 Iterative solution based on the MAP estimator |
Input: The observation matrix and the noise variance , the prior knowledge and , initial guess and the error tolerance Output: An estimate |
4.3.2. Initialization for DOA
4.4. Complexity Analysis
5. Simulation
5.1. Single Target DOA Estimation
5.2. Multiple Targets DOA Estimation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BCRLB | Bayesian Cramér–Rao Lower Bounds |
CRLB | Cramér–Rao Lower Bounds |
ECRLB | Expected Cramér–Rao Lower Bounds |
DOA | Direction of Arrival |
MAP | Maximum A Posterior |
ML | Maximum Likelihood |
MMSE | Minimum Mean Square Error |
SBL | Sparse Bayesian Learning |
SNR | Signal-to-Noise Ratio |
Appendix A
References
- Jia, T.; Wang, H.; Shen, X.; Jiang, Z.; He, K. Target localization based on structured total least squares with hybrid TDOA-AOA measurements. Signal Process. 2018, 143, 211–221. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Yang, L.; Wang, Y. Direction-of-arrival estimation for coherent signals through covariance-based grid free compressive sensing. JASA Express Lett. 2021, 1, 094801. [Google Scholar] [CrossRef] [PubMed]
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Akdemir, Ş.B.; Candan, Ç. Maximum-likelihood direction of arrival estimation under intermittent jamming. Digit. Signal Process. 2021, 113, 103028. [Google Scholar] [CrossRef]
- Ottersten, B.; Viberg, M.; Stoica, P.; Nehorai, A. Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing. In Radar Array Processing; Springer: Berlin/Heidelberg, Germany, 1993; pp. 99–151. [Google Scholar]
- Pal, P.; Vaidyanathan, P.P. Coprime sampling and the MUSIC algorithm. In Proceedings of the 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, AZ, USA, 4–7 January 2011; pp. 289–294. [Google Scholar]
- Jia, T.; Wang, H.; Shen, X.; Liu, X. Direction of arrival estimation with co-prime arrays via compressed sensing methods. In Proceedings of the OCEANS 2016–Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–5. [Google Scholar]
- Liu, C.L.; Vaidyanathan, P. Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Process. Lett. 2015, 22, 1438–1442. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Li, J.; Stoica, P.; Xie, L. Sparse methods for direction-of-arrival estimation. In Academic Press Library in Signal Processing: Array, Radar and Communications Engineering; Elsevier: London, UK, 2018; Volume 7, pp. 509–581. [Google Scholar]
- Shi, J.; Hu, G.; Zhang, X.; Sun, F.; Zhou, H. Sparsity-based two-dimensional DOA estimation for coprime array: From sum-difference coarray viewpoint. IEEE Trans. Signal Process. 2017, 65, 5591–5604. [Google Scholar] [CrossRef]
- Yang, J.; Liao, G.; Li, J. An efficient off-grid DOA estimation approach for nested array signal processing by using sparse Bayesian learning strategies. Signal Process. 2016, 128, 110–122. [Google Scholar] [CrossRef]
- Jia, T.; Wang, H.; Shen, X. A study of compressed sensing single-snapshot DOA estimation based on the RIPless theory. Telecommun. Syst. 2020, 74, 531–537. [Google Scholar] [CrossRef]
- Li, Y.; Chi, Y. Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. IEEE Trans. Signal Process. 2016, 64, 1257–1269. [Google Scholar] [CrossRef] [Green Version]
- Gorodnitsky, I.F.; Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 1997, 45, 600–616. [Google Scholar] [CrossRef] [Green Version]
- Stoica, P.; Babu, P.; Li, J. SPICE: A sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process. 2010, 59, 629–638. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, H.; Li, J.; Ji, F.; Chen, F. Sparse Bayesian learning using generalized double Pareto prior for DOA estimation. IEEE Signal Process. Lett. 2021, 28, 1744–1748. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process. 2013, 61, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhu, W.P.; Yan, J. Direction of arrival estimation for off-grid signals based on sparse Bayesian learning. IEEE Sens. J. 2016, 16, 2004–2016. [Google Scholar] [CrossRef]
- Dai, J.; So, H.C. Sparse Bayesian learning approach for outlier-resistant direction-of-arrival estimation. IEEE Trans. Signal Process. 2018, 66, 744–756. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Z.; Chen, Z.; Wang, X. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling. IEEE Trans. Signal Process. 2018, 67, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Yang, P.; Nehorai, A. Joint sparse recovery method for compressed sensing with structured dictionary mismatches. IEEE Trans. Signal Process. 2014, 62, 4997–5008. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Bao, X.; Xu, W.; Chang, C. Root sparse Bayesian learning for off-grid DOA estimation. IEEE Signal Process. Lett. 2017, 24, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Bhaskar, B.N.; Shah, P.; Recht, B. Compressed sensing off the grid. IEEE Trans. Inf. Theory 2013, 59, 7465–7490. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xie, L. On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Trans. Signal Process. 2015, 63, 3139–3153. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.V.; Cho, M.; Kruger, A.; Xu, W. Spectral super-resolution with prior knowledge. IEEE Trans. Signal Process. 2015, 63, 5342–5357. [Google Scholar] [CrossRef] [Green Version]
- Bell, K.L.; Baker, C.J.; Smith, G.E.; Johnson, J.T.; Rangaswamy, M. Cognitive radar framework for target detection and tracking. IEEE J. Sel. Top. Signal Process. 2015, 9, 1427–1439. [Google Scholar] [CrossRef]
- Haykin, S. Cognitive radar: A way of the future. IEEE Signal Process. Mag. 2006, 23, 30–40. [Google Scholar] [CrossRef]
- Gurbuz, S.Z.; Griffiths, H.D.; Charlish, A.; Rangaswamy, M.; Greco, M.S.; Bell, K. An overview of cognitive radar: Past, present, and future. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 6–18. [Google Scholar] [CrossRef]
- Guerci, J.R. Cognitive Radar: A Knowledge-Aided Fully Adaptive Approach; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Greco, M.S.; Gini, F.; Stinco, P.; Bell, K. Cognitive radars: On the road to reality: Progress thus far and possibilities for the future. IEEE Signal Process. Mag. 2018, 35, 112–125. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Cui, L.; Liu, W. Research of new concept sonar-cognitive sonar. J. Marine Sci. Appl. 2011, 10, 502–509. [Google Scholar] [CrossRef]
- Ulmke, M.; Koch, W. Road-map assisted ground moving target tracking. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 1264–1274. [Google Scholar] [CrossRef]
- Cheng, Y.; Singh, T. Efficient particle filtering for road-constrained target tracking. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1454–1469. [Google Scholar] [CrossRef] [Green Version]
- Kantor, J.M.; Richmond, C.D.; Bliss, D.W.; Correll, B. Mean-squared-error prediction for Bayesian direction-of-arrival estimation. IEEE Trans. Signal Process. 2013, 61, 4729–4739. [Google Scholar] [CrossRef]
- Trees, H.L.V. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Trees, H.L.V.; Bell, K.L. Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking; Wiley: Piscataway, NJ, USA, 2007. [Google Scholar]
- Richmond, C.D. Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covariances. IEEE Trans. Inf. Theory 2006, 52, 2146–2164. [Google Scholar] [CrossRef]
- Yardibi, T.; Li, J.; Stoica, P.; Xue, M.; Baggeroer, A.B. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 425–443. [Google Scholar] [CrossRef]
- Mahata, K.; Hyder, M.M. Fast frequency estimation with prior information. IEEE Trans. Signal Process. 2018, 66, 264–273. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L. Fast convex optimization method for frequency estimation with prior knowledge in all dimensions. Signal Process. 2018, 142, 271–280. [Google Scholar] [CrossRef]
Estimator | Complexity * |
---|---|
MAP-grid search | |
MMSE | |
MAP-iterative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, T.; Liu, H.; Wang, P.; Gao, C. Bayesian Direction of Arrival Estimation with Prior Knowledge from Target Tracker. Remote Sens. 2023, 15, 3255. https://doi.org/10.3390/rs15133255
Jia T, Liu H, Wang P, Gao C. Bayesian Direction of Arrival Estimation with Prior Knowledge from Target Tracker. Remote Sensing. 2023; 15(13):3255. https://doi.org/10.3390/rs15133255
Chicago/Turabian StyleJia, Tianyi, Hongwei Liu, Penghui Wang, and Chang Gao. 2023. "Bayesian Direction of Arrival Estimation with Prior Knowledge from Target Tracker" Remote Sensing 15, no. 13: 3255. https://doi.org/10.3390/rs15133255
APA StyleJia, T., Liu, H., Wang, P., & Gao, C. (2023). Bayesian Direction of Arrival Estimation with Prior Knowledge from Target Tracker. Remote Sensing, 15(13), 3255. https://doi.org/10.3390/rs15133255