Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Landsat Processing
2.3. Objective 1: Characterization of NDVI-Fc Relationship
2.4. Objective 2: Crop Cycle Monitoring
3. Results and Discussion
3.1. Relationship between NDVI and Fc
3.2. Fc Profiles
3.3. Kcb and ETcb Profiles
4. Summary and Conclusions
Acknowledgments
References
- Calif. Dept. Food & Agriculture. California Agricultural Production Statistics, Agricultural Resource Directory. Available online: http://www.cdfa.ca.gov/statistics/ (accessed on 27 June 2011).
- Temesgen, B.; Eching, S.; Davidoff, B.; Frame, K. Comparison of some reference evapotranspiration equations for California. J. Irrig. Drain. Eng 2005, 131, 73–84. [Google Scholar]
- Hart, Q.; Brugnach, M.; Temesgen, B.; Rueda, C.; Ustin, S.; Frame, K. Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation. Civil Eng. Environ. Syst 2009, 26, 19–33. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper # 56; UN Food & Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Bausch, W.C. Remote sensing of crop coefficients for improving the irrigation scheduling of corn. Agr. Water Manage 1995, 27, 55–68. [Google Scholar]
- Hunsaker, D.J.; Barnes, E.M.; Clarke, T.R.; Fitzgerald, G.J.; Pinter, P.J. Cotton irrigation scheduling using remotely sensed and FAO-56 basal crop coefficients. ASAE Trans 2005, 48, 1395–1407. [Google Scholar]
- Neale, C.M.U.; Jayanthi, H.; Wright, J.L. Irrigation water management using high resolution airborne remote sensing. Irrig. Drain. Syst 2005, 19, 321–336. [Google Scholar]
- Er-Raki, S.; Chehbouni, A.; Duchemin, G. Combining satellite remote sensing data with the FAO-56 dual approach for water use mapping in irrigated wheat fields of a semi-arid region. Remote Sens 2010, 2, 375–387. [Google Scholar]
- Grattan, S.R.; Bowers, W.; Dong, A.; Snyder, R.; Carroll, J.; George, W. New crop coefficients estimate water use of vegetables, row crops. Calif. Agr 1998, 52, 16–21. [Google Scholar]
- de Medeiros, G.; Arruda, F.B.; Sakai, E.; Fujiwara, M. The influence of crop canopy on evapotranspiration and crop coefficient of beans. Agr. Water Manage 2001, 49, 211–224. [Google Scholar]
- Ayars, J.E.; Johnson, R.S.; Phene, C.J.; Trout, T.J.; Clark, D.A.; Mead, R.M. Water use by drip-irrigated late-season peaches. Irrig. Sci 2003, 22, 187–194. [Google Scholar]
- Williams, L.E.; Ayars, J.E. Grapevine water use and crop coefficient are linear functions of shaded area beneath the canopy. Agr. Forest Meteorol 2005, 132, 201–211. [Google Scholar]
- Hanson, B.R.; May, D.M. Crop coefficients for drip-irrigated processing tomato. Agr. Water Manage 2006, 81, 381–399. [Google Scholar]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci 2009, 28, 17–34. [Google Scholar]
- Bryla, D.R.; Trout, T.J.; Ayars, J.E. Weighing lysimeters for developing crop coefficients and efficient irrigation practices for vegetable crops. Hort. Sci 2010, 45, 1597–1604. [Google Scholar]
- Asrar, G.; Fuchs, M.; Kanemasu, E.T.; Hatfield, J.L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron. J 1984, 76, 300–306. [Google Scholar]
- Daughtry, C.S.; Gallo, K.P.; Goward, S.N.; Prince, S.D.; Kustas, W.P. Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies. Remote Sens. Environ 1992, 39, 141–152. [Google Scholar]
- Goward, S.N.; Huemmrich, K.F. Vegetation canopy PAR absorptance and NDVI: An assessment using the SAIL model. Remote Sens. Environ 1992, 39, 119–140. [Google Scholar]
- Calera, A.; Martinez, C.; Melia, J. A procedure for obtaining green plant cover: Relation to NDVI in a case study for barley. Int. J. Remote Sens 2001, 22, 3357–3362. [Google Scholar]
- Johnson, L.F.; Scholasch, T. Remote sensing of shaded area in vineyards. Hort. Tech 2005, 15, 859–863. [Google Scholar]
- Lopez-Urrea, R.; Montoro, A.; Gonzalez-Piqueras, J.; Lopez-Fuster, P.; Fereres, E. Water use of spring wheat to raise water productivity. Agr. Water Manage 2009, 96, 1305–1310. [Google Scholar]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, G.; Ezzahar, J.; Hadria, R. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agr. Water Manage 2007, 87, 41–54. [Google Scholar]
- Trout, T.J.; Johnson, L.F.; Gartung, J. Remote sensing of canopy cover in horticultural crops. HortSci 2008, 43, 333–337. [Google Scholar]
- Hornbuckle, J.W.; Car, N.J.; Christen, E.W.; Stein, T.M.; Williamson, B. IrriSatSMS: Irrigation Water Management by Satellite and SMS—A Utilisation Framework; CSIRO Land and Water Science Report No. 04/09; Commonwealth Scientific and Industrial Research Organisation: Griffith, NSW, Australia, 2009. [Google Scholar]
- Masek, J.G.; Vermote, E.F.; El Saleous, N.Z.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Trans. Geosci. Remote Sens. Lett 2006, 3, 68–72. [Google Scholar]
- Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ 2002, 83, 97–111. [Google Scholar]
- Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.; Li, R.; Flynn, L. The MODIS 2.1-μm channel—Correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens 1997, 35, 1286–1298. [Google Scholar]
- Lillesand, T.; Kiefer, R. Remote Sensing and Image Interpretation, 3rd ed.; Wiley & Sons: New York, NY, USA, 1994; p. 18. [Google Scholar]
- Ayars, J.E. Water requirement of irrigated garlic. ASABE Trans 2008, 51, 1683–1688. [Google Scholar]
- Rossi, S.; Rampini, A.; Bocchi, S.; Boschetti, M. Operation monitoring of daily crop water requirements at the regional scale with time series of satellite data. J. Irrig. Drain. Eng 2010, 136, 225–231. [Google Scholar]
- Bastiaanssen, W.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). J. Hydrol 1998, 212, 198–229. [Google Scholar]
- Rafn, E.; Contor, B.; Ames, D. Evaluation of a method for estimating irrigated crop evapotranspiration coefficients from remotely sensed data in Idaho. J. Irrig. Drain. Eng 2008, 134, 722–729. [Google Scholar]
- Murray, R.S.; Nagler, P.L.; Morino, K.; Glenn, E.P. An empirical algorithm for estimating agricultural and riparian evapotranspiration using MODIS enhanced vegetation index and ground measurements of ET. II. Application to the Lower Colorado River, US. Remote Sens 2009, 1, 1125–1138. [Google Scholar]
- Bausch, W. Soil background effects on reflectance-based crop coefficients for corn. Remote Sens. Environ 1993, 46, 213–222. [Google Scholar]
- Montandon, L.; Small, E. The impact of soil reflectance on the quantification of green vegetation fraction from NDVI. Remote Sens. Environ 2008, 112, 1835–1845. [Google Scholar]
DOY | Path/Row | NDVI-Fc | Crop cycle | Notesa |
---|---|---|---|---|
47 | 42/35 | ● | ||
54 | 43/35 | c | ||
63 | 42/35 | ● | ||
70 | 43/35 | ● | ||
79 | 42/35 | ● | ||
86 | 43/35 | ● | ||
95 | 42/35 | ● | ● | |
102 | 43/35 | ● | ||
111 | 42/35 | ● | ● | |
118 | 43/35 | ● | ||
127 | 42/35 | x | ||
134 | 43/35 | ● | ||
143 | 42/35 | ● | ● | |
150 | 43/35 | ● | ||
159 | 42/35 | ● | ● | |
166 | 43/35 | ● | ||
175 | 42/35 | ● | ● | |
182 | 43/35 | ● | ||
191 | 42/35 | ● | ● | |
198 | 43/35 | ● | ||
207 | 42/35 | ● | ● | |
214 | 43/35 | ● | ||
223 | 42/35 | ● | f | |
230 | 43/35 | ● | ||
239 | 42/35 | ● | ● | |
246 | 43/35 | ● | ||
255 | 42/35 | ● | ● | |
262 | 43/35 | ● | ||
271 | 42/35 | ● | ● | |
278 | 43/35 | c | ||
287 | 42/35 | ● | ● | |
294 | 43/35 | ● | ||
303 | 42/35 | ● | ||
310 | 43/35 | c | ||
319 | 42/35 | ● |
Field | Crop | Size (ha) | Lat (N) | Long (W) | Development (DOY) | Harvest (DOY) |
---|---|---|---|---|---|---|
A | garlic | 30 | 36.358 | 120.270 | 47 | 214 |
B | garlic | 30 | 36.591 | 120.030 | 47 | 214 |
C | bellpepper | 10 | 36.430 | 120.291 | 150 | 214–223 |
D | bellpepper | 10 | 36.430 | 120.286 | 143 | 214–223 |
E | broccoli | 5 | 36.302 | 120.211 | 262 | >319a |
F | broccoli | 5 | 36.302 | 120.209 | 255 | >319a |
G | broccoli | 5 | 36.302 | 120.204 | 246 | >319a |
H | lettuce | 10 | 36.400 | 120.300 | 262 | >319a |
I | lettuce | 10 | 36.406 | 120.304 | 255 | 303–319 |
J | lettuce | 10 | 36.404 | 120.300 | 262 | 303–319 |
Crop | Conversion Equation | Reported r2 |
---|---|---|
garlic | Kcb = −0.985Fc2 + 1.759Fc + 0.272 | 0.992 |
bellpepper | Kcb = −0.078Fc2 +1.124Fc + 0.142 | 0.994 |
broccoli | Kcb = −0.933Fc2 + 1.756Fc +0.181 | 0.999 |
lettuce | Kcb = −0.07Fc2 + 1.08Fc + 0.209 | 0.992 |
Field | Crop | Crop Duration (d) | ETcb Total (mm) | ETcb Total (ML) | Daily ETcb Mean (mm) | Daily ETcb Min (mm) | Daily ETcb Max (mm) |
---|---|---|---|---|---|---|---|
A | garlic | 111† | 378 | 113.4 | 3.5 | 0.4 | 8.9 |
B | garlic | 111† | 417 | 125.1 | 3.8 | 0.4 | 9.5 |
C | bellpepper | 65–74 | 302–366 | 30.2–36.6 | 4.6 | 1.2 | 7.4 |
D | bellpepper | 65–74 | 354–421 | 35.4–42.1 | 4.9 | 0.5 | 8.2 |
E | broccoli | >58‡ | >146 | >7.3 | 2.5 | 0.8 | 4.0 |
F | broccoli | >65‡ | >162 | >8.1 | 2.5 | 0.7 | 4.1 |
G | broccoli | >74‡ | >203 | >10.2 | 2.7 | 1.0 | 4.5 |
H | lettuce | >58‡ | >120 | >12.0 | 2.1 | 0.7 | 3.2 |
I | lettuce | 49–65 | 110–138 | 11.0–13.8 | 2.1 | 0.8 | 3.4 |
J | lettuce | 42–57 | 98–125 | 9.8–10.5 | 2.2 | 0.6 | 3.6 |
Crop | Field | Daily ETcb Uncertainty, Development (mm); (DOY in paren’s) | Daily ETcb Uncertainty, Mid-Season (mm); (DOY in paren’s) | Seasonal ETcb Uncertainty |
---|---|---|---|---|
garlic | B | 0.21 (091) | 0.14 (134) | ±5.9% |
bellpepper | C | 0.42 (178) | 0.44 (214) | ±9.5% |
broccoli | F | 0.26 (273) | ∼nil (319) | ±6.1% |
lettuce | J | 0.31 (275) | 0.16 (303) | ±9.8% |
Share and Cite
Johnson, L.F.; Trout, T.J. Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley. Remote Sens. 2012, 4, 439-455. https://doi.org/10.3390/rs4020439
Johnson LF, Trout TJ. Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley. Remote Sensing. 2012; 4(2):439-455. https://doi.org/10.3390/rs4020439
Chicago/Turabian StyleJohnson, Lee F., and Thomas J. Trout. 2012. "Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley" Remote Sensing 4, no. 2: 439-455. https://doi.org/10.3390/rs4020439
APA StyleJohnson, L. F., & Trout, T. J. (2012). Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley. Remote Sensing, 4(2), 439-455. https://doi.org/10.3390/rs4020439