An Indirect Measurement Methodology to Identify Load Fluctuations on Axial Turbine Runner Blades
Abstract
:1. Introduction
2. Case Study
2.1. Experimental Set-Up
2.2. Instrumentation
2.3. Kaplan Turbine Operation and Measurement Program
3. Analysis
3.1. Time Domain Analysis
3.2. Frequency Analysis
4. Results
4.1. Time-Averaged Parameters
4.2. Peak-to-Peak Amplitudes
4.3. Spectral Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murdock, H.E.; Gibb, D.; André, T. Renewables 2020 Global Status Report; REN21 Secretariat: Paris, France, 2020. [Google Scholar]
- Rodriguez, C.G.; Mateos-Prieto, B.; Egusquiza, E. Monitoring of rotor-stator interaction in pump-turbine using vibrations measured with on-board sensors rotating with shaft. Shock Vib. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Egusquiza, E.; Valero, C.; Valentin, D.; Presas, A.; Rodriguez, C.G. Condition monitoring of pump-turbines. New challenges. Measurement 2015, 67, 151–163. [Google Scholar]
- Liu, X.; Luo, Y.; Wang, Z. A review on fatigue damage mechanism in hydro turbines. Renew. Sustain. Energy Rev. 2016, 54, 1–14. [Google Scholar] [CrossRef]
- Dorji, U.; Ghomashchi, R. Hydro turbine failure mechanisms: An. overview. Eng. Fail. Anal. 2014, 44, 136–147. [Google Scholar] [CrossRef]
- Egusquiza, E.; Valero, C.; Huang, X.; Jou, E.; Guardo, A.; Rodriguez, C. Failure investigation of a large pump-turbine runner. Eng. Fail. Anal. 2012, 23, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Frunzǎverde, D.; Muntean, S.; Mǎrginean, G.; Campian, V.; Marşavina, L.; Terzi, R.; Şerban, V. Failure analysis of a Francis turbine runner. In Proceedings of the 25th IAHR Symposium on Hydraulic Machinery and Systems, Timişoara, Romania, 20–24 September 2010; IOP Publishing: Bristol, UK, 2010; p. 12115. [Google Scholar]
- Liu, X.; Luo, Y.; Presas, A.; Wang, Z.; Zhou, L. Cavitation effects on the structural resonance of hydraulic turbines: Failure analysis in a real francis turbine runner. Energies 2018, 11, 2320. [Google Scholar] [CrossRef] [Green Version]
- Urquiza, G.; Garcia, J.C.; Gonzalez, J.G.; Castro, L.; Rodriguez, J.A.; Basurto-Pensado, M.A.; Mendoza, O.F. Failure analysis of a hydraulic Kaplan turbine shaft. Eng. Fail. Anal. 2014, 41, 108–117. [Google Scholar] [CrossRef]
- Trivedi, C.; Gandhi, B.; Michel, C.J. Effect of transients on Francis turbine runner life: A review. J. Hydraul. Res. 2013, 51, 121–132. [Google Scholar] [CrossRef]
- Soltani Dehkharqani, A.; Aidanpää, J.; Engström, F.; Cervantes, M. A review of available methods for the assessment of fluid added mass, damping, and stiffness with an emphasis on hydraulic turbines. Appl. Mech. Rev. 2018, 70. [Google Scholar] [CrossRef]
- Monette, C.; Marmont, H.; Chamberland-Lauzon, J.; Skagerstrand, A.; Coutu, A.; Carlevi, J. Cost of enlarged operating zone for an existing Francis runner. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Grenoble, France, 4–8 July 2016. [Google Scholar]
- Huang, X.; Oram, C.; Sick, M. Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Montreal, QC, Canada, 22–26 September 2014. [Google Scholar]
- Huang, X.; Chamberland-Lauzon, J.; Oram, C.; Klopfer, A.; Ruchonnet, N. Fatigue analyses of the prototype Francis runners based on site measurements and simulations. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Montreal, QC, Canada, 22–26 September 2014. [Google Scholar]
- Valentín, D.; Presas, A.; Valero, C.; Egusquiza, M.; Egusquiza, E. Detection of hydraulic phenomena in francis turbines with different sensors. Sensors 2019, 19, 4053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diagne, I.; Gagnon, M.; Tahan, A. Modeling the dynamic behavior of turbine runner blades during transients using indirect measurements. In Proceedings of the 28th IAHR Symposium on Hydraulic Machinery and Systems (IAHR2016), Grenoble, France, 4–8 July 2016; IOP Publishing: Bristol, UK, 2016; p. 72014. [Google Scholar]
- Wang, W.; Chen, Q.; Yan, D. Hydraulic stability analysis of a large prototype Francis turbine based on field test. J. Fluids Eng. 2018, 140, 114501. [Google Scholar] [CrossRef]
- Dehkharqani, S.A. An Experimental Investigation of a Prototype Kaplan Turbine and Numerical Analysis of Fluid Added Parameters on the Corresponding Model Turbine Runner. Ph.D. Thesis, Lulea University of Technology, Luleå, Sweden, 2020. [Google Scholar]
- Dehkharqani, S.A.; Engström, F.; Aidanpää, J.; Cervantes, M.J. Experimental investigation of a 10 MW prototype axial turbine runner: Vortex rope formation and mitigation. J. Fluids Eng. 2020, 142, 101212. [Google Scholar] [CrossRef]
- Dehkharqani, S.A.; Engström, F.; Aidanpää, J.; Cervantes, M.J. Experimental investigation of a 10 MW prototype kaplan turbine during start-up operation. Energies 2019, 12, 4582. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, C.; Agnalt, E.; Dahlhaug, O.G.; Brandastro, B.A. Signature analysis of characteristic frequencies in a Francis turbine. In Proceedings of the 29th IAHR Symposium on Hydraulic Machinery and Systems (IAHR2018), Kyoto, Japan, 16–21 September 2018; IOP Publishing: Bristol, UK, 2018; p. 72008. [Google Scholar]
- Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M.J. Unsteady pressure measurements on the runner of a Kaplan turbine during load acceptance and load rejection. J. Hydraul. Res. 2016, 54, 56–73. [Google Scholar] [CrossRef]
- Houde, S.; Dumas, G.; Deschênes, C. Experimental and numerical investigations on the origins of rotating stall in a propeller turbine runner operating in no-load conditions. J. Fluids Eng. 2018, 140, 111104. [Google Scholar] [CrossRef]
- Wannassi, M.; Monnoyer, F. Numerical simulation of the flow through the blades of a swirl generator. Appl. Math. Model. 2016, 40, 1247–1259. [Google Scholar] [CrossRef]
- Favrel, A.; Gomes Pereira Junior, J.; Landry, C.; Müller, A.; Nicolet, C.; Avellan, F. New insight in Francis turbine cavitation vortex rope: Role of the runner outlet flow swirl number. J. Hydraul. Res. 2018, 56, 367–379. [Google Scholar] [CrossRef]
Parameter [Unit] | Value |
---|---|
Head | 55.5 |
Power | 10 |
Discharge | 20 |
Rotational speed | 600 |
Transducer Name | Accuracy | Maximum Uncertainty 1 (%) | Transducer Type and Position of Installation |
---|---|---|---|
P-PS-2 | ± 0.1% full scale output (FSO) best fit straight line (BFSL) (typical), ± 0.5% FSO (maximum) | 0.71 | Pressure transducers installed on the runner blade (Kulite LL-080 series) |
P-PS-3 | 1.63 | ||
P-PS-4 | 0.91 | ||
P-PS-6 | 1.11 | ||
S-SS-5R | ± 0.1% FSO BFSL (typ.), ± 0.5% FSO (max.) | 1.80 | Strain gages installed on the runner blade (K-LY41-6/350-3-2M manufactures by HBM) |
S-SS-5T | 2.06 | ||
S-SS-6R | 3.96 | ||
S-SS-6T | 2.62 | ||
Torsion strain gage | ± 1% gage factor tolerance ± 0.35% resistance tolerance 0.3% transverse sensitivity | 3.42 | Strain gages installed on the shaft (K-XY41-6/350-3-2M manufactures by HBM) |
Axial strain gage 1 | ± 1% gage factor tolerance ± 0.35% resistance tolerance 0.1% Transverse Sensitivity | 5.78 | Strain gages installed on the runner blade (K-LY41-6/350-3-2M manufactures by HBM) |
Axial strain gage 2 | 7.79 | ||
Axial strain gage 3 | 6.00 | ||
Axial strain gage 4 | 7.95 | ||
Proximity probe 1 | ± 0.01 mm Repeat accuracy (constant temperature) | 2.50 | DW-AD-509-M12 manufactured by Contrinex |
Proximity probe 2 | 3.60 |
Phenomenon | P-PS-2 | S-SS-5R | S-SS-5T | Axial Strain | Torsion Strain | Bending Strain | Proximity Probe |
---|---|---|---|---|---|---|---|
RVR-Synchronous mode | ✓ | ✓ | - | ✓ | ✓ | - | × |
RVR-Synchronous mode*2 | ✓ | ✓ | - | ✓ | ✓ | - | × |
RVR-Asynchronous mode | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
1 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
2 | ✓ | ✓ | ✓ | ✓ | ✓ | - | ✓ |
20 | ✓ | ✓ | ✓ | ✓ | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soltani Dehkharqani, A.; Engström, F.; Aidanpää, J.-O.; Cervantes, M.J. An Indirect Measurement Methodology to Identify Load Fluctuations on Axial Turbine Runner Blades. Sensors 2020, 20, 7220. https://doi.org/10.3390/s20247220
Soltani Dehkharqani A, Engström F, Aidanpää J-O, Cervantes MJ. An Indirect Measurement Methodology to Identify Load Fluctuations on Axial Turbine Runner Blades. Sensors. 2020; 20(24):7220. https://doi.org/10.3390/s20247220
Chicago/Turabian StyleSoltani Dehkharqani, Arash, Fredrik Engström, Jan-Olov Aidanpää, and Michel J. Cervantes. 2020. "An Indirect Measurement Methodology to Identify Load Fluctuations on Axial Turbine Runner Blades" Sensors 20, no. 24: 7220. https://doi.org/10.3390/s20247220
APA StyleSoltani Dehkharqani, A., Engström, F., Aidanpää, J. -O., & Cervantes, M. J. (2020). An Indirect Measurement Methodology to Identify Load Fluctuations on Axial Turbine Runner Blades. Sensors, 20(24), 7220. https://doi.org/10.3390/s20247220