Compact Antenna in 3D Configuration for Rectenna Wireless Power Transmission Applications
Abstract
:1. Introduction
2. Design of a Compact 3D Dipole Antenna
2.1. Antenna Miniaturization Methods and the First Design of the Compact 3D Dipole
2.2. Second Miniaturized Antenna Design
3. Characterization of the Designed Antennas
4. Rectenna and Wireless Power Transmission Experimentations
- -
- is the harvested DC power obtained across the load;
- -
- and are the transmitting antenna gain and the receiver antenna gain;
- -
- is the wavelength at the operating frequency;
- -
- is the electromagnetic (EM) power density and is the RF power from the source;
- -
- is the distance between the transmitting and receiving antennas.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Carminati, M.; Sinha, G.R.; Mohdiwale, S.; Ullo, S.L. Miniaturized Pervasive Sensors for Indoor Health Monitoring in Smart Cities. Smart Cities 2021, 4, 146–155. [Google Scholar] [CrossRef]
- Donchev, E.; Pang, J.; Gammon, P.; Centeno, A.; Xie, F.; Petrov, P.; Alford, N. The rectenna device: From theory to practice (a review). MRS Energy Sustain. 2014, 1, E1. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.C.; Chiu, C.; Gong, J. A Wearable Rectenna to Harvest Low-Power RF Energy for Wireless Healthcare Applications. In Proceedings of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 30 August–15 September 2018; pp. 1–5. [Google Scholar]
- Takacs, A.; Okba, A.; Aubert, H. Compact Planar Integrated Rectenna for Batteryless IoT Applications. In Proceedings of the 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018; pp. 777–780. [Google Scholar]
- Shafique, K.; Khawaja, B.A.; Khurram, M.D.; Sibtain, S.M.; Siddiqui, Y.; Mustaquin, M.; Chattha, T.H.; Yang, X. Energy Harvesting Using a Low-Cost Rectenna for Internet of Things (IoT) Applications. IEEE Access 2018, 6, 30932–30941. [Google Scholar] [CrossRef]
- Pizzotti, M.; Perilli, L.; Del Prete, M.; Fabbri, D.; Canegallo, R.; Dini, M.; Masotti, D.; Costanzo, A.; Franchi Scarselli, E.; Romani, A. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications. Sensors 2017, 17, 1732. [Google Scholar]
- Okba, A.; Takacs, A.; Aubert, H. Compact Flat Dipole Rectenna for IoT Applications. Prog. Electromagn. Res. C 2018, 87, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Rokunuzzaman, M.; Islam, M.T.; Rowe, W.S.T.; Kibria, S.; Singh, M.J.; Misran, N. Design of a Miniaturized Meandered Line Antenna for UHF RFID Tags. PLoS ONE 2016, 11, e0161293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianvittorio, J.P.; Rahmat-Samii, Y. Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 2002, 44, 20–36. [Google Scholar] [CrossRef]
- Das, S.; Sawyer, D.J.; Diamanti, N.; Annan, A.P.; Iyer, A.K. A strongly miniaturized and inherently matched folded dipole antenna for narrowband applications. IEEE Antennas Propag. Mag. 2019, 68, 3377–3386. [Google Scholar] [CrossRef] [Green Version]
- Babar, A.A.; Virtanen, J.; Bhagavati, V.A.; Ukkonen, L.; Elsherbeni, A.Z.; Kallio, P.; Sydänheimo, L. Inkjet-printable UHF RFID tag antenna on a flexible ceramic-polymer composite substrate. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (MTT ‘12), Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Li, K.; Zhu, C.; Li, L.; Cai, Y.M.; Liang, C.H. Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antenn. Wirel. Pract. Lett. 2013, 12, 678–681. [Google Scholar] [CrossRef]
- Balanis, C.A. Frequency Independent Antennas, Antenna Miniaturization, and Fractal Antennas. In Antenna Theory: Analysis and Design, 3rd ed.; John Wiley: Hoboken, NJ, USA, 2005; pp. 637–640. [Google Scholar]
- Wheeler, H.A. Fundamental Limitations of Small Antennas. Proc. IRE 1947, 35, 1479–1484. [Google Scholar] [CrossRef]
- Marrocco, G. The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques. IEEE Antennas Propag. Mag. 2008, 50, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Niotaki, K.; Kim, S.; Jeong, S.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. A Compact Dual-Band Rectenna Using Slot-Loaded Dual Band Folded Dipole Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1634–1637. [Google Scholar] [CrossRef]
- Balanis, C.A. Broadband Dipoles and Matching Techniques. In Antenna Theory: Analysis and Design, 3rd ed.; John Wiley: Hoboken, NJ, USA, 2005; pp. 538–541. [Google Scholar]
- Ting, J.; Oloumi, D.; Rambabu, K. A miniaturized broadband bow-tie antenna with improved cross-polarization performance. Int. J. Electron. Commun. 2017, 78, 173–180. [Google Scholar] [CrossRef]
- Durgun, A.C.; Balanis, C.A.; Birtcher, C.R.; Allee, D.R. Design, Simulation, Fabrication and Testing of Flexible Bow-Tie Antennas. IEEE Trans. Antennas Propag. 2011, 59, 4425–4435. [Google Scholar] [CrossRef]
- U.FL Series Connector HIROSE Electric Group. Available online: https://www.hirose.com/product/series/U.FL?lang=en (accessed on 5 December 2019).
- Zahid, S.; Quddious, A.; Tahir, F.A.; Vryonides, P.; Antoniades, M.; Nikolaou, S. Dual-Band Compact Antenna for UHF and ISM Systems. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Trinh, L.H.; Nguyen, T.Q.K.; Phan, D.D.; Tran, V.Q.; Bui, V.X.; Truong, N.V.; Ferrero, F. Miniature antenna for IoT devices using LoRa technology. In Proceedings of the International Conference on Advanced Technologies for Communications (ATC), Quy Nhon, Vietnam, 18–20 October 2017; pp. 170–173. [Google Scholar]
- Asadallah, F.A.; Eid, A.; Shehadeh, G.; Costantine, J.; Tawk, Y.; Tentzeris, M.M. Digital Reconfiguration of a Single Arm Three-Dimensional Bowtie Antenna. IEEE Trans. Antennas Propag. 2020. [Google Scholar] [CrossRef]
- Sidibe, A.; Loubet, G.; Takacs, A.; Dragomirescu, D. Energy Harvesting for Battery-Free Wireless Sensors Network Embedded in a Reinforced Concrete Beam. In Proceedings of the 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021; pp. 702–705. [Google Scholar]
- Sidibe, A.; Takacs, A. Compact 3D Rectenna for Low-Power Wireless Transmission. In Proceedings of the XXXIV URSI General Assembly and Scientific Symposium (URSI GASS), Rome, Italy, 28 August–4 September 2021. [Google Scholar]
- Loubet, G.; Takacs, A.; Gardner, E.; De Luca, A.; Udrea, F.; Dragomirescu, D. LoRaWAN Battery-Free Wireless Sensors Network Designed for Structural Health Monitoring in the Construction Domain. Sensors 2019, 19, 1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NXP Semiconductors. QN908x Ultra-Low-Power BLE SoC. Available online: https://www.nxp.com/docs/en/nxp/data-sheets/QN908x.pdf (accessed on 12 January 2021).
- Texas Instruments. bq25570 Ultra Low-Power Harvester power Management IC with boost charger and Nanopower Buck Converter. Available online: http://www.ti.com/lit/ds/symlink/bq25570.pdf (accessed on 12 January 2021).
- Panasonic. EEEFK0J101P Aluminum Electrolytic Capacitors. Available online: https://industrial.panasonic.com/cdbs/www-data/pdf/RDE0000/ABA0000C1181.pdf (accessed on 12 January 2021).
- Texas Instruments. Ultra-Low-Power, Digital Humidity Sensor with Temperature Sensor HDC2080. Available online: https://www.ti.com/lit/ds/symlink/hdc2080.pdf (accessed on 12 January 2021).
Ref. | Freq. (MHz) | Type | Max Gain (dBi) | BW (MHz) | Substrate | Size (mm × mm × mm) |
---|---|---|---|---|---|---|
[21] | 878 | Dual Band PIFA | +1.8–+1.9 | 80 (855–937) | Duroid 5880 | 80 × 45 (0.03·λ2) |
[22] | 868 | UCA PIFA | +0.71 | 23 (857–880) | FR4 | 34 × 80 (0.02·λ2) |
[16] | 915 | Slot loaded DB folded dipole | +1.87 | Not available | Arlon 25N | 60 × 60 × 60 (0.006·λ3) |
[23] | 868 | 3D single arm bowtie | +0.19 | 90 | Ultralam | 50 × 50 × 10 (0.0006·λ3) |
This work | 868 | 3D modified T-match dipole | +1.54 | 32 (865–897) | FR4 | 56 × 32 × 10 (0.0004·λ3) |
+1.1 | 26 (862–888) | 40 × 30 × 10 (0.0003·λ3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidibe, A.; Takacs, A.; Loubet, G.; Dragomirescu, D. Compact Antenna in 3D Configuration for Rectenna Wireless Power Transmission Applications. Sensors 2021, 21, 3193. https://doi.org/10.3390/s21093193
Sidibe A, Takacs A, Loubet G, Dragomirescu D. Compact Antenna in 3D Configuration for Rectenna Wireless Power Transmission Applications. Sensors. 2021; 21(9):3193. https://doi.org/10.3390/s21093193
Chicago/Turabian StyleSidibe, Alassane, Alexandru Takacs, Gaël Loubet, and Daniela Dragomirescu. 2021. "Compact Antenna in 3D Configuration for Rectenna Wireless Power Transmission Applications" Sensors 21, no. 9: 3193. https://doi.org/10.3390/s21093193
APA StyleSidibe, A., Takacs, A., Loubet, G., & Dragomirescu, D. (2021). Compact Antenna in 3D Configuration for Rectenna Wireless Power Transmission Applications. Sensors, 21(9), 3193. https://doi.org/10.3390/s21093193