Microneedle Array Electrode-Based Wearable EMG System for Detection of Driver Drowsiness through Steering Wheel Grip
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. AD8232-Based EMG Measurement System
2.3. Driver Drowsiness Detection System Design and Procedure
2.4. EMG Test Comparison of MNE vs. Ag/AgCl Electrodes
2.5. Driver Drowsiness vs. Muscle Activity Test
2.6. Frequency Domain Analysis of the Signal
2.7. Design Algorithm to Alert the Driver after Drowsiness Detection
3. Results and Discussions
3.1. EMG Monitoring Performance of MNE vs. Ag/AgCl Electrode
3.2. Driver Drowsiness vs. Muscle Activity Performance
3.3. Frequency Domain Response of the Signal
3.4. Design Algorithm Performance for Drowsiness Detection and Alertness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ogilvie, R.D.; Wilkinson, R.T.; Allison, S. The Detection of Sleep Onset: Behavioral, Physiological, and Subjective Convergence. Sleep 1989, 12, 458–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, S.; Monteiro, T.; Lobo, A.; Couto, A.; Cunha, L.; Ferreira, S. Analyzing Driver Drowsiness: From Causes to Effects. Sustainability 2020, 12, 1971. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.L.; Howard, M.E.; Horrey, W.J.; Liang, Y.; Anderson, C.; Shreeve, M.S.; O’Brien, C.S.; Czeisler, C.A. High risk of near-crash driving events following night-shift work. Proc. Natl. Acad. Sci. USA 2016, 113, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bener, A.; Yildirim, E.; Özkan, T.; Lajunen, T. Driver sleepiness, fatigue, careless behavior and risk of motor vehicle crash and injury: Population based case and control study. J. Traffic Transp. Eng. 2017, 4, 496–502. [Google Scholar] [CrossRef]
- Watling, C.N. Young drivers who continue to drive while sleepy: What are the associated sleep- and driving-related factors? J. Sleep Res. 2020, 29, 1–7. [Google Scholar] [CrossRef]
- Gwak, J.; Shino, M.; Hirao, A. Early Detection of Driver Drowsiness Utilizing Machine Learning based on Physiological Signals, Behavioral Measures, and Driving Performance. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018; Volume 2018-Novem, pp. 1794–1800. [Google Scholar]
- Sahayadhas, A.; Sundaraj, K.; Murugappan, M. Detecting Driver Drowsiness Based on Sensors: A Review. Sensors 2012, 12, 16937–16953. [Google Scholar] [CrossRef] [Green Version]
- Ingre, M.; Akerstedt, T.; Peters, B.; Anund, A.; Kecklucd, G. Subjective sleepiness, simulated driving performance and blink duration: Examining individual differences. J. Sleep Res. 2006, 15, 47–53. [Google Scholar] [CrossRef]
- Abdul Rahim, H.; Yusop, Z.; Abdul Rahim, R. Drowsy Driver Detection via Steering Wheel. Sens. Transducers 2010, 120, 119–133. [Google Scholar]
- Li, F.; Wang, X.W.; Lu, B.L. Detection of driving fatigue based on grip force on steering wheel with wavelet transformation and support vector machine. Lect. Notes Comput. Sci. 2013, 8228 LNCS, 141–148. [Google Scholar] [CrossRef]
- Baronti, F.; Lenzi, F.; Roncella, R.; Saletti, R. Distributed sensor for steering wheel grip force measurement in driver fatigue detection. Proc.-Design Autom. Test Eur. 2009, 894–897. [Google Scholar] [CrossRef]
- Polychronopoulos, A.; Amditis, A.; Bekiaris, E. Information data flow in awake multi-sensor driver monitoring system. In Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy, 14−17 June 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 902–906. [Google Scholar]
- Lin, Y.; Leng, H.; Yang, G.; Cai, H. An Intelligent Noninvasive Sensor for Driver Pulse Wave Measurement. IEEE Sens. J. 2007, 7, 790–799. [Google Scholar] [CrossRef]
- Awais, M.; Badruddin, N.; Drieberg, M. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability. Sensors 2017, 17, 1991. [Google Scholar] [CrossRef] [Green Version]
- Hostens, I.; Ramon, H. Assessment of muscle fatigue in low level monotonous task performance during car driving. J. Electromyogr. Kinesiol. 2005, 15, 266–274. [Google Scholar] [CrossRef]
- Lin, C.T.; Wu, R.C.; Liang, S.F.; Chao, W.H.; Chen, Y.J.; Jung, T.P. EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Trans. Biomed. Circuit Syst. 2005, 52, 2726–2738. [Google Scholar]
- Lin, C.-T.; Chang, C.-J.; Lin, B.-S.; Hung, S.-H.; Chao, C.-F.; Wang, I.-J. A Real-Time Wireless Brain–Computer Interface System for Drowsiness Detection. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 214–222. [Google Scholar] [CrossRef]
- Chowdhury, A.; Shankaran, R.; Kavakli, M.; Haque, M.M. Sensor Applications and Physiological Features in Drivers’ Drowsiness Detection: A Review. IEEE Sens. J. 2018, 18, 3055–3067. [Google Scholar] [CrossRef]
- Dong-Mei, H.; Yi, Y.; Zheng, W. Dong-Mei Measurement System for Surface Electromyogram and hand grip force based on Labview. In World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 67–70. [Google Scholar]
- Nazmi, N.; Abdul Rahman, M.; Yamamoto, S.-I.; Ahmad, S.; Zamzuri, H.; Mazlan, S. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions. Sensors 2016, 16, 1304. [Google Scholar] [CrossRef] [Green Version]
- Sidek, S.N.; Haja Mohideen, A.J. Mapping of EMG signal to hand grip force at varying wrist angles. In Proceedings of the 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, 17–19 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 648–653. [Google Scholar]
- Dantas, J.L.; Camata, T.V.; Brunetto, M.A.O.C.; Moraes, A.C.; Abrao, T.; Altimari, L.R. Fourier and wavelet spectral analysis of EMG signals in isometric and dynamic maximal effort exercise. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 5979–5982. [Google Scholar]
- Satti, A.T.; Park, J.; Park, J.; Kim, H.; Cho, S. Fabrication of Parylene-Coated Microneedle Array Electrode for Wearable ECG Device. Sensors 2020, 20, 5183. [Google Scholar] [CrossRef] [PubMed]
- Procházka, A.; Kuchyňka, J.; Vyšata, O.; Cejnar, P.; Vališ, M.; Mařík, V. Multi-Class Sleep Stage Analysis and Adaptive Pattern Recognition. Appl. Sci. 2018, 8, 697. [Google Scholar] [CrossRef] [Green Version]
- Analog Devices, Heart Rate Monitor for Wearable Products, Massachusetts, USA, 2012–2017. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/ad8232.pdf (accessed on 7 July 2021).
- De Luca, C.J.; Donald Gilmore, L.; Kuznetsov, M.; Roy, S.H. Filtering the surface EMG signal: Movement artifact and baseline noise contamination. J. Biomech. 2010, 43, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Roland, T.; Amsuess, S.; Russold, M.; Baumgartner, W. Ultra-Low-Power Digital Filtering for Insulated EMG Sensing. Sensors 2019, 19, 959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AD8232 Filter Design (Open Source). [Software]. 2017. Available online: https://www.analog.com/en/products/ad8232.html#product-tools (accessed on 8 July 2021).
- Horne, J.; Reyner, L. Vehicle accidents related to sleep: A review. Occup. Environ. Med. 1999, 56, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc, Y.; Ugo, D. Electrode Placement in Surface Electromyography(sEMG) “Minimal Crosstalk Area”. Open Rehabil. J. 2010, 4, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Shair, E.F.; Ahmad, S.A.; Marhaban, M.H.; Mohd Tamrin, S.B.; Abdullah, A.R. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting. Biomed Res. Int. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Costa, M.V.; Pereira, L.A.; Oliveira, R.S.; Pedro, R.E.; Camata, T.V.; Abrão, T.; Brunetto, M.A.O.C.; Altimari, L.R. Fourier and wavelet spectral analysis of EMG signals in maximal constant load dynamic exercise. IEEE Eng. Med. Biol. Soc. Conf. 2010, 4622–4625. [Google Scholar] [CrossRef]
- Zawawi, T.N.S.T.; Abdullah, A.R.; Halim, I.; Shair, E.F.; Salleh, S.M. Application of spectrogram in analysing electromyography (EMG) signals of manual lifting. ARPN J. Eng. Appl. Sci. 2016, 11, 3603–3609. [Google Scholar]
- Mahmoodi, M.; Nahvi, A. Driver drowsiness detection based on classification of surface electromyography features in a driving simulator. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 395–406. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satti, A.T.; Kim, J.; Yi, E.; Cho, H.-y.; Cho, S. Microneedle Array Electrode-Based Wearable EMG System for Detection of Driver Drowsiness through Steering Wheel Grip. Sensors 2021, 21, 5091. https://doi.org/10.3390/s21155091
Satti AT, Kim J, Yi E, Cho H-y, Cho S. Microneedle Array Electrode-Based Wearable EMG System for Detection of Driver Drowsiness through Steering Wheel Grip. Sensors. 2021; 21(15):5091. https://doi.org/10.3390/s21155091
Chicago/Turabian StyleSatti, Afraiz Tariq, Jiyoun Kim, Eunsurk Yi, Hwi-young Cho, and Sungbo Cho. 2021. "Microneedle Array Electrode-Based Wearable EMG System for Detection of Driver Drowsiness through Steering Wheel Grip" Sensors 21, no. 15: 5091. https://doi.org/10.3390/s21155091
APA StyleSatti, A. T., Kim, J., Yi, E., Cho, H. -y., & Cho, S. (2021). Microneedle Array Electrode-Based Wearable EMG System for Detection of Driver Drowsiness through Steering Wheel Grip. Sensors, 21(15), 5091. https://doi.org/10.3390/s21155091