Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications
Abstract
:1. Introduction
2. Antenna Design Methodology
2.1. Proposed Single Antenna Design
2.2. Design Methodology
2.3. Equivalent Circuit Model
3. Results and Discussion
Fabrication and Measurements
4. Comparison with State-of-the-Art Antennas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Nella, A.; Gandhi, A.S. A survey on microstrip antennas for portable wireless communication system applications. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 2156–2165. [Google Scholar] [CrossRef]
- Kadir, E.A.; Shamsuddin, S.M.; Rahman, E.S.T.A.; Rahim, S.K.A.; Rosa, S.L. Multi Bands Antenna for Wireless Communication and Mobile System. Int. J. Circuits Syst. Signal Process. 2014, 8, 563–568. [Google Scholar]
- Laheurte, J.-M. Compact Antennas for Wireless Communications and Terminals: Theory and Design; Wiley-ISTE: Hoboken, NJ, USA, 2012; 272p. [Google Scholar] [CrossRef]
- Dakulagi, V.; Bakhar, M. Advances in Smart Antenna Systems for Wireless Communication. Wireless Pers. Commun. 2020, 110, 931–957. [Google Scholar] [CrossRef]
- Sharma, S.K.; Chieh, J.S. Multifunctional Antennas and Arrays for Wireless Communication Systems; Wiley-IEEE Press: Hoboken, NJ, USA, 2021; 464p. [Google Scholar]
- Goudarzi, A.; Honari, M.M.; Mirzavand, R. Resonant Cavity Antennas for 5G Communication Systems: A Review. Electronics 2020, 9, 1080. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, S.; Khan, B.; Flint, J. A multi-band switchable antenna for Wi-Fi, 3G Advanced, WiMAX, and WLAN wireless applications. Int. J. Microw. Wirel. Technol. 2018, 10, 991–997. [Google Scholar] [CrossRef]
- Chetal, S.; Nayak, A.K.; Panigrahi, R.K. Multiband antenna for WLAN, WiMAX and future wireless applications. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 9–15 March 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Afzal, W.; Rafique, U.; Ahmed, M.M.; Khan, M.A.; Mughal, F.A. A tri-band H-shaped microstrip patch antenna for DCS and WLAN applications. In Proceedings of the 2012 19th International Conference on Microwaves, Radar & Wireless Communications, Warsaw, Poland, 21–23 May 2012; pp. 256–258. [Google Scholar] [CrossRef]
- Lee, K.-F.; Tong, K.-F. Microstrip Patch Antennas—Basic Characteristics and Some Recent Advances. Proc. IEEE 2012, 100, 2169–2180. [Google Scholar] [CrossRef]
- Waterhouse, R. Microstrip Patch Antennas: A Designer’s Guide; Springer: Boston, MA, USA, 2003; 421p. [Google Scholar] [CrossRef]
- Malik, P.K.; Padmanaban, S.; Holm-Nielsen, J.B. Microstrip Antenna Design for Wireless Applications; CRC Press: Boca Raton, FL, USA, 2021; 352p, ISBN 9780367554385. [Google Scholar]
- Liu, Y.; Si, L.; Wei, M.; Yan, P.; Yang, P.; Lu, H.; Zheng, C.; Yuan, Y.; Mou, J.; Lv, X.; et al. Some Recent Developments of Microstrip Antenna. Int. J. Antennas Propag. 2012, 2012, 428284. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Wang, X.; Shen, G.; Li, R. A Triband SIW Cavity-Backed Differentially Fed Dual-Polarized Slot Antenna for WiFi/5G Applications. IEEE Trans. Antennas Propag. 2020, 68, 8209–8214. [Google Scholar] [CrossRef]
- Wahab, W.M.A.; Safavi-Naeini, S.; Busuioc, D. Low cost microstrip patch antenna array using planar waveguide technology for emerging millimeter-wave wireless communication. In Proceedings of the 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference, Ottawa, ON, Canada, 5–8 July 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Davoudabadifarahani, H.; Ghalamkari, B. High efficiency miniaturized microstrip patch antenna for wideband terahertz communications applications. Optik 2019, 194, 163118. [Google Scholar] [CrossRef]
- Belen, M.A. Performance enhancement of a microstrip patch antenna using dual-layer frequency-selective surface for ISM band applications. Microw. Opt. Technol. Lett. 2018, 60, 2730–2734. [Google Scholar] [CrossRef]
- Chen, D.; Che, W.; Yang, W. High-efficiency microstrip patch antennas using non-periodic artificial magnetic conductor structure. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Azpilicueta, L.; Naser-Moghadasi, M.; Akinsolu, M.O.; See, C.H.; Liu, B.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I.; et al. A Comprehensive Survey of “Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications”. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Darimireddy, N.; Mallikarjuna, A. Design of triple-layer double U-slot patch antenna for wireless applications. J. Appl. Res. Technol. 2015, 13, 526–534. [Google Scholar] [CrossRef]
- Tan, Q.; Chen, F.-C. Triband Circularly Polarized Antenna Using a Single Patch. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2013–2017. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Limiti, E.; Naser-Moghadasi, M.; Virdee, B.S.; Sadeghzadeh, R.A. A New Wideband Planar Antenna with Band-Notch Functionality at GPS, Bluetooth and WiFi Bands for Integration in Portable Wireless Systems. AEU—Int. J. Electron. Commun. 2017, 72, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Naser-Moghadasi, M.; Alibakhshi-Kenari, M.; Sadeghzadeh, R.A.; Virdee, B.S.; Limiti, E. New CRLH-Based Planar Slotted Antennas with Helical Inductors for Wireless Communication Systems, RF-Circuits and Microwave Devices at UHF-SHF Bands. Wirel. Pers. Commun. 2017, 92, 1029–1038. [Google Scholar]
- Li, E.; Li, X.J.; Zhao, Q. A Design of Ink-Printable Triband Slot Microstrip Patch Antenna for 5G Applications. In Proceedings of the 4th Australian Microwave Symposium (AMS), Sydney, Australia, 13–14 February 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Osama, W.; Khaleel, A. Double U-slot rectangular patch antenna for multiband applications. Comput. Electr. Eng. 2020, 84, 106608. [Google Scholar]
- Asif, S.; Rafiq, M. A compact multiband microstrip patch antenna with U-shaped parasitic elements. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 617–618. [Google Scholar]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadah, R. The Resonating MTM Based Miniaturized Antennas for Wide-band RF-Microwave Systems. Microw. Opt. Technol. Lett. 2015, 57, 2339–2344. [Google Scholar] [CrossRef]
- Khunead, G.; Nakasuwan, J.; Songthanapitak, N.; Anantrasirichai, N. Investigate Rectangular Slot Antenna with L-shape Strip. Piers Online 2007, 3, 1076–1079. [Google Scholar] [CrossRef]
- Prasad, M.; Khasim, S. A Triband Heart Shaped Microstrip Patch antenna. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 1070–1073. [Google Scholar] [CrossRef]
- Ghalibafan, J.; Farrokh, H. A new dual-band microstrip antenna with U-shaped slot. Prog. Electromagn. Res. C 2010, 12, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Chitra, R.; Nagarajan, V. Design of E slot rectangular microstrip slot antenna for WiMAX application. In Proceedings of the IEEE International Conference on Communication and Signal Processing, Melmaruvathur, India, 3–5 April 2013; pp. 1048–1052. [Google Scholar]
- Gupta, M.; Vinita, M. Koch boundary on the square patch microstrip antenna for ultra-wideband applications. Alex. Eng. J. 2018, 57, 2113–2122. [Google Scholar] [CrossRef]
- Roopa, R.; Kumarswamy, Y. Enhancement of performance parameters of sierpeinsiki antenna using computational technique. In Proceedings of the IEEE International Conference on Wireless Communications, Signal Processing and Networking, Chennai, India, 23–25 March 2016; pp. 7–10. [Google Scholar]
- Dabas, T.; Kanaujia, B. Design of multiband multipolarised single feed patch antenna. IET Microw. Antennas Propag. 2018, 12, 2372–2378. [Google Scholar] [CrossRef]
- Mazen, K.; Emran, A. Design of Multi-band Microstrip Patch Antennas for Mid-band 5G Wireless Communication. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 458–469. [Google Scholar] [CrossRef]
- Mabaso, M.; Pradeep, K. A Microstrip Patch Antenna with Defected Ground Structure for Triple Band Wireless Communications. J. Commun. 2019, 14, 684–688. [Google Scholar] [CrossRef]
Parameters | Value (mm) | Parameters | Value (mm) |
---|---|---|---|
Lg | 40.8 | Wg | 50 |
L1 | 4.45 | W1 | 10.5 |
L2 | 4.0 | W2 | 3.5 |
L3 | 11.05 | W3 | 13.70 |
L4 | 21.50 | W4 | 5.10 |
L5 | 6.50 | W5 | 10.0 |
L6 | 10.0 | W6 | 7.0 |
Lf | 10.0 | Wf | 5.0 |
G | 2.0 | S | 19.2 |
Capacitor | Value (pF) | Inductor | Value (nH) | Resistor | Value (Ohm) |
---|---|---|---|---|---|
Cin | 2.3 | Lin | 1 | R1 | 50 |
C1 | 3.0 | L1 | 1.3 | R2 | 47 |
C2 | 20 | L2 | 100 | R3 | 45 |
C3 | 35 | L3 | 24 | Ra | 2 |
Ca | 2 | La | 1 | Zin | 50 |
Ref. No. | Size (mm3) | Operating Frequency (GHz) | Bandwidth (MHz) | Peak Gain (dB) | Substrate Material | Proposed Technique |
---|---|---|---|---|---|---|
[27] | 40 × 40 × 1.52 | 2.6, 6, 8.5 | 50, 22.8, 30 | 6.2, 4.52, 6.9 | FR-4 | Microstrip Patch |
[31] | 80 × 78.93 × 1.7 | 1.429, 1.839 | NA | 2.9, 4.3 | FR-4 | U-shaped patch |
[33] | 60 × 55 × 1.59 | 4.3, 5.0, 6.1, 7.4, 8.9, 9.2 | 68.6, 126.7, 132, 124.3, 191.2, 530.6 | 1.08, 3.23, 3.36, 2.77, 3.07, 4.87 | FR-4 | Square shaped microstrip patch |
[34] | 70 × 70 × 1.58 | 1.75, 3.65, 5.55, 6.6 | 170, 60, 140, 120 | 7.2, 11.2, 11.3, 7 | FR-4 | Sierpeinsiki-shaped patch |
[35] | 70 × 60 × 1.6 | 1, 1.2, 0.7 | 50, 60, 60 | 2.313, 2.396, 2.478 | FR-4 | Microstrip patch |
[36] | 94 × 78 × 3.18 | 2.53, 3.86, 6.45, 6.93 | 50.70, 410, 1250 | 8.18, 7.97, 10.56, 22, 5 | Rogors RT5880 | Microstrip Patch |
[37] | 50 × 50 × 1.5 | 1.2, 2.4, 5.6 | 12.76, 52.979, 52.979 | NA | FR-4 | Patch with defected ground |
[This work] | 60 × 50 × 1.6 | Sim: 1.8, 3.5, 5.4 Meas: 1.7, 3.39, 5.38 | Sim: 140, 180, 200 Meas: 140.2, 180.1, 200.2 | Sim: 2.34, 5.2, 1.42 Meas: 2.22, 5.18, 1.38 | FR-4 | F-shaped Planar patch |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkorany, A.S.; Mousa, A.N.; Ahmad, S.; Saleeb, D.A.; Ghaffar, A.; Soruri, M.; Dalarsson, M.; Alibakhshikenari, M.; Limiti, E. Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications. Sensors 2022, 22, 667. https://doi.org/10.3390/s22020667
Elkorany AS, Mousa AN, Ahmad S, Saleeb DA, Ghaffar A, Soruri M, Dalarsson M, Alibakhshikenari M, Limiti E. Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications. Sensors. 2022; 22(2):667. https://doi.org/10.3390/s22020667
Chicago/Turabian StyleElkorany, Ahmed Saad, Alyaa Nehru Mousa, Sarosh Ahmad, Demyana Adel Saleeb, Adnan Ghaffar, Mohammad Soruri, Mariana Dalarsson, Mohammad Alibakhshikenari, and Ernesto Limiti. 2022. "Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications" Sensors 22, no. 2: 667. https://doi.org/10.3390/s22020667
APA StyleElkorany, A. S., Mousa, A. N., Ahmad, S., Saleeb, D. A., Ghaffar, A., Soruri, M., Dalarsson, M., Alibakhshikenari, M., & Limiti, E. (2022). Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications. Sensors, 22(2), 667. https://doi.org/10.3390/s22020667