Doublet Metalens with Simultaneous Chromatic and Monochromatic Correction in the Mid-Infrared
Abstract
:1. Introduction
2. Design and Optimization of the MIR Doublet Metalens
2.1. Correction of Off-Axis Monochromatic Aberration
2.2. Correction of Chromatic Aberration
3. Results
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 2017, 358, eaam8100. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 2015, 6, 7069. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Arbabi, E.; Kamali, S.M.; Horie, Y.; Han, S.; Faraon, A. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 2016, 7, 13682. [Google Scholar] [CrossRef] [PubMed]
- Groever, B.; Chen, W.T.; Capasso, F. Meta-Lens Doublet in the Visible Region. Nano Lett. 2017, 17, 4902–4907. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion. Nano Lett. 2017, 17, 1819–1824. [Google Scholar] [CrossRef]
- Shrestha, S.; Overvig, A.C.; Lu, M.; Stein, A.; Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 2018, 7, 85. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sisler, J.; Bharwani, Z.; Capasso, F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 2019, 10, 355. [Google Scholar] [CrossRef]
- Elsawy, M.M.R.; Gourdin, A.; Binois, M.; Duvigneau, R.; Felbacq, D.; Khadir, S.; Genevet, P.; Lanteri, S. Multiobjective Statistical Learning Optimization of RGB Metalens. ACS Photonics 2021, 8, 2498–2508. [Google Scholar] [CrossRef]
- Lim, S.W.D.; Meretska, M.L.; Capasso, F. A High Aspect Ratio Inverse-Designed Holey Metalens. Nano Lett. 2021, 21, 8642–8649. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Yang, W.; Ji, Z.; Jin, L.; Ma, X.; Song, Q.; Boltasseva, A.; Han, J.; Shalaev, V.M.; et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 2021, 12, 5056. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Bai, W.; Jia, H.; Han, J.; Guo, P.; Wu, J.; Yang, J. Multifocal co-plane metalens based on computer-generated holography for multiple visible wavelengths. Results Phys. 2020, 17, 103085. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Yuan, H.; Wang, Z.; Deng, Y.; Zhang, Z.; Lin, G.; Yang, J. A vortex-focused beam metalens array in the visible light range based on computer-generated holography. Results Phys. 2021, 25, 104211. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, M.; Cheng, W.; Peng, Z.; Cheng, H.; Ren, X.; Zang, S.; Shuai, Y.; Liu, H.; Wu, J.; et al. Manipulation force analysis of nanoparticles with ultra-high numerical aperture metalens. Opt. Express 2022, 30, 28479–28491. [Google Scholar] [CrossRef]
- Cheng, W.; Feng, J.; Wang, Y.; Peng, Z.; Zang, S.; Cheng, H.; Ren, X.; Shuai, Y.; Liu, H.; Wu, J.; et al. Genetic algorithms designed ultra-broadband achromatic metalens in the visible. Optik 2022, 258, 168868. [Google Scholar] [CrossRef]
- Ni, X.; Emani, N.K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband Light Bending with Plasmonic Nanoantennas. Science 2012, 335, 427. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Mühlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Dispersionless Phase Discontinuities for Controlling Light Propagation. Nano Lett. 2012, 12, 5750–5755. [Google Scholar] [CrossRef]
- Zhang, S.; Kim, M.; Aieta, F.; She, A.; Mansuripur, T.; Gabay, I.; Khorasaninejad, M.; Rousso, D.; Wang, X.; Troccoli, M.; et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Opt. Express 2016, 24, 18024–18034. [Google Scholar] [CrossRef]
- Wu, P.; Pala, R.A.; Shirmanesh, G.K.; Cheng, W.; Sokhoyan, R.; Grajower, M.; Alam, M.Z.; Lee, D.; Atwater, H.A. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces. Nat. Commun. 2019, 10, 3654. [Google Scholar] [CrossRef]
- Zheng, G.X.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.M.; Zeuner, F.; Li, X.; Reineke, B.; He, S.; Qiu, C.; Liu, J.; Wang, Y.; Zhang, S.; Zentgraf, T. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 2016, 7, 11930. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Dong, F.; Li, Q.; Yang, D.; Sun, C.; Chen, J.; Song, Z.; Xu, L.; Chu, W.; Xiao, Y.; et al. Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. Nano Lett. 2016, 16, 5235–5240. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Briere, G.; Fang, X.; Ni, P.; Sawant, R.; Héron, S.; Chenot, S.; Vézian, S.; Damilano, B.; Brändli, V.; et al. Metasurface orbital angular momentum holography. Nat. Commun. 2019, 10, 2986. [Google Scholar] [CrossRef]
- Wen, D.; Cadusch, J.J.; Meng, J.; Crozier, K.B. Light field on a chip: Metasurface-based multicolor holograms. Adv. Photonics 2021, 3, 024001. [Google Scholar] [CrossRef]
- Wu, P.; Tsai, W.; Chen, W.T.; Huang, Y.; Chen, T.; Chen, J.; Liao, C.Y.; Chu, C.H.; Sun, G.; Tsai, D.P. Versatile Polarization Generation with an Aluminum Plasmonic Metasurface. Nano Lett. 2017, 17, 445–452. [Google Scholar] [CrossRef]
- Park, J.; Kang, J.; Kim, S.J.; Liu, X.; Brongersma, M.L. Dynamic Reflection Phase and Polarization Control in Metasurfaces. Nano Lett. 2017, 17, 407–413. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Wang, Y.; Feng, X.; Zhao, M.; Wan, Z.; Zhu, L.; Liu, J.; Huang, Y.; Xia, J.; et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 2018, 9, 4607. [Google Scholar] [CrossRef]
- Mahmood, N.; Kim, I.; Mehmood, M.Q.; Jeong, H.; Akbar, A.; Lee, D.; Saleem, M.; Zubair, M.; Anwar, M.S.; Tahir, F.A.; et al. Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides. Nanoscale 2018, 10, 18323–18330. [Google Scholar] [CrossRef]
- Arbabi, E.; Kamali, S.M.; Arbabi, A.; Faraon, A. Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces. ACS Photonics 2018, 5, 3132–3140. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Li, X.; Wang, Y.; Huang, C. Dual functionality of a single-layer metasurface: Polarization rotator and polarizer. J. Opt. 2020, 22, 035101. [Google Scholar] [CrossRef]
- Lv, H.; Mou, Z.; Zhou, C.; Wang, S.; He, X.; Han, Z.; Teng, S. Metasurface circular polarizer based on rotational symmetric nanoholes. Nanotechnology 2021, 32, 315203. [Google Scholar] [CrossRef]
- Li, G.H.; Clarke, B.P.; So, J.; MacDonald, K.F.; Zheludev, N.I. Holographic free-electron light source. Nat. Commun. 2016, 7, 13705. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, M.Q.; Mei, S.; Hussain, S.; Huang, K.; Siew, S.Y.; Zhang, L.; Zhang, T.; Ling, X.; Liu, H.; Teng, J.; et al. Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices. Adv. Mater. 2016, 28, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.L.; Song, X.; Reineke, B.; Li, T.; Li, X.; Liu, J.; Zhang, S.; Wang, Y.; Zentgraf, T. Volumetric Generation of Optical Vortices with Metasurfaces. ACS Photonics 2017, 4, 338–346. [Google Scholar] [CrossRef]
- Tang, S.W.; Li, X.; Pan, W.; Zhou, J.; Jiang, T.; Ding, F. High-efficiency broadband vortex beam generator based on transmissive metasurface. Opt. Express 2019, 27, 4281–4291. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Li, B.; Meng, Z.; Zhao, L.; Mao, M.; Liu, H.; Wei, Z. Efficient point-by-point manipulated visible meta-vortex-lenses with arbitrary orbital angular momentum. Nanotechnology 2020, 31, 035702. [Google Scholar] [CrossRef]
- Li, J.S.; Zhang, L.N. Simple terahertz vortex beam generator based on reflective metasurfaces. Opt. Express 2020, 28, 36403–36412. [Google Scholar] [CrossRef]
- Cheng, K.; Hu, Z.; Wang, Y.; Ma, J.; Wang, J. High-performance terahertz vortex beam generator based on square-split-ring metasurfaces. Opt. Lett. 2020, 45, 6054–6057. [Google Scholar] [CrossRef]
- Zuo, H.; Choi, D.; Gai, X.; Ma, P.; Xu, L.; Neshev, D.N.; Zhang, B.; Luther-Davies, B. High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging. Adv. Opt. Mater. 2017, 5, 1700585. [Google Scholar] [CrossRef]
- Wang, A.; Chen, Z.M.; Dan, Y.P. Planar metalenses in the mid-infrared. AIP Adv. 2019, 9, 085327. [Google Scholar] [CrossRef]
- Zhou, H.P.; Chen, L.; Shen, F.; Guo, K.; Guo, Z. Broadband Achromatic Metalens in the Midinfrared Range. Phys. Rev. Appl. 2019, 11, 024066. [Google Scholar] [CrossRef]
- Ou, K.; Yu, F.; Li, G.; Wang, W.; Chen, J.; Miroshnichenko, A.E.; Huang, L.; Li, T.; Li, Z.; Chen, X.; et al. Broadband Achromatic Metalens in Mid-Wavelength Infrared. Laser Photonics Rev. 2021, 15, 2100020. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Wang, D.; Shi, X.; Fan, Z. Transmissive mid-infrared achromatic bifocal metalens with polarization sensitivity. Opt. Express 2021, 29, 17173–17182. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Sha, C.; Ding, J. Polarization-independent broadband achromatic metalens in the mid-infrared (3–5 μm) region. Appl. Phys. Express 2022, 15, 022001. [Google Scholar] [CrossRef]
- Sha, C.; Xiong, W.; Zhang, B.; Ding, J. Broadband achromatic mid-infrared metalens with polarization-insensitivity. AIP Adv. 2022, 12, 025123. [Google Scholar] [CrossRef]
- Shalaginov, M.Y.; An, S.; Yang, F.; Su, P.; Lyzwa, D.; Agarwal, A.M.; Zhang, H.; Hu, J.; Gu, T. Single-Element Diffraction-Limited Fisheye Metalens. Nano Lett. 2020, 20, 7429–7437. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Li, K.; Li, J.; Liang, H.; Conteduca, D.; Borges, B.V.; Krauss, T.F.; Martins, E.R. On Metalenses with Arbitrarily Wide Field of View. ACS Photonics 2020, 7, 2073–2079. [Google Scholar] [CrossRef]
- Hao, C.; Gao, S.; Ruan, Q.; Feng, Y.; Li, Y.; Yang, J.K.W.; Li, Z.; Qiu, C. Single-Layer Aberration-Compensated Flat Lens for Robust Wide-Angle Imaging. Laser Photonics Rev. 2020, 14, 2000017. [Google Scholar] [CrossRef]
- Backer, A.S. Computational inverse design for cascaded systems of metasurface optics. Opt. Express 2019, 27, 30308–30331. [Google Scholar] [CrossRef]
- Tang, D.L.; Chen, L.; Liu, J.; Zhang, X. Achromatic metasurface doublet with a wide incident angle for light focusing. Opt. Express 2020, 28, 12209–12218. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kim, S.; Lee, B. Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations. Opt. Express 2020, 28, 18059–18076. [Google Scholar] [CrossRef] [PubMed]
Wavelengths (μm) | a1 | a2 | a3 | a4 | a5 |
---|---|---|---|---|---|
3.1 | 16.758 | 4.346 | 1.194 | 0.815 | −0.880 |
3.2 | 16.160 | 4.360 | 1.247 | 0.095 | −0.377 |
3.3 | 15.844 | 2.340 | 4.177 | −1.145 | −0.549 |
3.4 | 14.870 | 4.874 | 0.709 | −1.203 | 0.751 |
3.5 | 14.832 | 2.078 | 4.071 | −1.109 | −0.543 |
Wavelengths (μm) | b1 | b2 | b3 | b4 | b5 |
---|---|---|---|---|---|
3.1 | −33.489 | −1.043 | 0.443 | −0.134 | 0.018 |
3.2 | −32.418 | −0.998 | 0.422 | −0.127 | 0.017 |
3.3 | −31.347 | −0.980 | 0.418 | −0.127 | 0.017 |
3.4 | −30.394 | −0.947 | 0.404 | −0.123 | 0.017 |
3.5 | −29.476 | −0.918 | 0.392 | −0.120 | 0.017 |
Wavelengths (μm) | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 |
---|---|---|---|---|---|
(rad) | 0.0105 | 8.076 | 4.076 | 2.765 | −4.311 |
Ave. dif. (2π rad) | 0.0527 | 0.0352 | 0.0519 | 0.0589 | 0.0643 |
Wavelengths (μm) | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 |
---|---|---|---|---|---|
(rad) | 13.315 | 1.857 | −2.980 | 4.941 | −6.645 |
Ave. dif. (2π rad) | 0.0588 | 0.0472 | 0.0721 | 0.0684 | 0.0733 |
Wavelengths (μm) | 3.1 | 3.15 | 3.2 | 3.25 | 3.3 | 3.35 | 3.4 | 3.45 | 3.5 |
---|---|---|---|---|---|---|---|---|---|
X (μm) (0°) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
X (μm) (5°) | 7.85 | 8.05 | 7.87 | 7.69 | 7.57 | 7.75 | 7.78 | 7.80 | 7.90 |
X (μm) (10°) | 15.43 | 15.88 | 15.67 | 16.19 | 16.18 | 16.02 | 15.86 | 15.84 | 15.72 |
Wavelengths (μm) | 3.1 | 3.15 | 3.2 | 3.25 | 3.3 | 3.35 | 3.4 | 3.45 | 3.5 |
---|---|---|---|---|---|---|---|---|---|
FWHM (μm) (0°) | 4.35 | 4.56 | 4.91 | 4.83 | 4.60 | 4.66 | 5.03 | 5.41 | 5.32 |
FWHM (μm) (5°) | 5.33 | 4.84 | 4.62 | 4.83 | 4.30 | 4.96 | 4.88 | 5.10 | 5.16 |
FWHM (μm) (10°) | 5.19 | 5.70 | 4.77 | 4.83 | 4.16 | 4.51 | 4.57 | 4.64 | 5.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Gan, F.; Wang, R.; Lan, D.; Shang, X.; Li, W. Doublet Metalens with Simultaneous Chromatic and Monochromatic Correction in the Mid-Infrared. Sensors 2022, 22, 6175. https://doi.org/10.3390/s22166175
Zhou Y, Gan F, Wang R, Lan D, Shang X, Li W. Doublet Metalens with Simultaneous Chromatic and Monochromatic Correction in the Mid-Infrared. Sensors. 2022; 22(16):6175. https://doi.org/10.3390/s22166175
Chicago/Turabian StyleZhou, Yi, Fengyuan Gan, Ruxue Wang, Dun Lan, Xiangshuo Shang, and Wei Li. 2022. "Doublet Metalens with Simultaneous Chromatic and Monochromatic Correction in the Mid-Infrared" Sensors 22, no. 16: 6175. https://doi.org/10.3390/s22166175
APA StyleZhou, Y., Gan, F., Wang, R., Lan, D., Shang, X., & Li, W. (2022). Doublet Metalens with Simultaneous Chromatic and Monochromatic Correction in the Mid-Infrared. Sensors, 22(16), 6175. https://doi.org/10.3390/s22166175