Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network
Abstract
:1. Introduction
- A hybrid forecasting framework based on the improved SCA and LSTM is proposed and it is used to solve the problem of short-term electric load forecasting;
- Logistic chaotic operators and multilevel modulation factors are used to overcome the problem of the conventional SCA tending to fall into local optima during the optimization process;
- The parameter fetching problem of the LSTM by the improved SCA is optimized and then the optimized LSTM is used to forecast the short-term electric load;
- The method proposed in this paper for short-term electricity load forecasting is used, and the experiments demonstrate high efficiency of the method.
2. Materials and Methods
3. Problem Formulation
4. Stochastic Power Forecasting with Data-Driven Heuristic Method
4.1. Meta-Heuristic Method
4.1.1. Standard Sine Cosine Algorithm
4.1.2. Modified Sine Cosine Method
Algorithm 1. MetaREC process |
1. Input: Number of solution , dimension of solution , maximum number of iterations , objective fitness function . |
2. Initialization of the initial population distribution based on and using the Logistic chaos operator. |
3. The fitness value of each solution is calculated according to the fitness function and the one with the smallest fitness value is found. |
4. Do (for each iteration) |
5. Update multilevel regulatory factor according to (7); |
6. Update parameters ; |
7. The position of each solution is updated according to Equation (9); |
8. Calculate the fitness value of each solution according to . |
9. Update the global optimal solution . |
10. While () |
11. Output: Global optimal solution after iteration. |
4.2. Deep Convolution Based LSTM Network
4.2.1. Basic LSTM Process
- The cellular information from the previous moment is selectively filtered using the forgotten door to pick out the cellular information that has an impact on that moment before being fed into the neural network for calculation
- 2.
- The input door determines which information will be stored in the cell state.
- 3.
- The output gate is calculated to obtain the current hidden layer state .
4.2.2. MetaREC Process via LSTM Network
Algorithm 2. MetaREC_LSTM |
1. Input: The data set, maximum number of iterations , number of solutions , dimension of solution , position and optiaml fitness of the solution . , |
2. for to do |
3. , , , . |
4. Calculate the fitness value of each solution by using MetaREC |
5. LSTMtrain ( |
6. LSTMpredice |
7. |
8. end for |
9.Recalculate the fitness value of each solution for updating the optimal solution according to MetaREC |
10. for to do |
11. Update parameters ; |
12. for to do |
13. for j to do |
14. |
15. end for |
16. end for |
17. |
18. end for |
19., , , |
20.Retraining the LSTM model |
21. LSTMtrain ( |
22. LSTMpredice |
4.3. LSTM-Based Heuristic Structure for Electric Forecasting
5. Simulation Results
5.1. Evaluation Setup
- Relative percentage error: the magnitude of this parameter illustrates the difference between the predicted and true data of the load. The smaller this parameter is, the better the prediction of the model is [67].
- Mean absolute percentage error (MAPE): if this parameter is 0 the prediction model is perfect and when this parameter is greater than 100%, it means that the model is inferior [68].
- Root mean square error (RMSE): The smaller this parameter is, the better the prediction model is, and vice versa, the bigger the value the worse the model is [69].
- Mean absolute error (MAE): The smaller this parameter is, the better the prediction performance of the prediction model.
- Coefficient of determination (: This parameter implies the degree of fit of the prediction model. The closer the value of this parameter is to 1, the better the fit of the model. It is the proportion of variation in the dependent variable that is predicted by the model [70].
5.2. Test Functions Assessment
5.3. Comparison of Electricity Load Forecasting
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hahn, H.; Meyer, S.; Pickl, S. Electric Load Forecasting Methods: Tools for Decision Making. Eur. J. Oper. Res. 2009, 199, 902–907. [Google Scholar] [CrossRef]
- Almeshaiei, E.; Soltan, H.A. Methodology for Electric Power Load Forecasting. Alex. Eng. J. 2011, 50, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Feinberg, E.A.; Genethliou, D. Load forecasting. In Proceedings of the Applied Mathematics for Restructured Electric Power Systems; Springer: New York, NY, USA, 2005; pp. 269–285. [Google Scholar]
- Przystupa, K.; Kozieł, J. Small photovoltaic installation in the power grid. In Proceedings of the 2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE), Janow Podlaski, Poland, 9–12 June 2019; pp. 134–138. [Google Scholar]
- Greengard, S. The Internet of Things; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Hu, Z.; Tereykovski, I.A.; Tereykovska, L.O.; Pogorelov, V.V. Determination of Structural Parameters of Multilayer Perceptron Designed to Estimate Parameters of Technical Systems. Int. J. Intell. Syst. Appl. 2017, 9, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Beshley, H.; Beshley, M.; Medvetskyi, M.; Pyrih, J. QoS-Aware Optimal Radio Resource Allocation Method for Machine-Type Communications in 5G LTE and beyond Cellular Networks. Wirel. Commun. Mob. Comput. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Hu, Z.; Ivashchenko, M.; Lyushenko, L.; Klyushnyk, D. Artificial Neural Network Training Criterion Formulation Using Error Continuous Domain. Int. J. Mod. Educ. Comput. Sci. 2021, 13, 13–22. [Google Scholar] [CrossRef]
- Hassan, Q. Optimisation of Solar-Hydrogen Power System for Household Applications. Int. J. Hydrog. Energy 2020, 45, 33111–33127. [Google Scholar] [CrossRef]
- Ceran, B.; Mielcarek, A.; Hassan, Q.; Teneta, J.; Jaszczur, M. Aging Effects on Modelling and Operation of a Photovoltaic System with Hydrogen Storage. Appl. Energy 2021, 297, 117161. [Google Scholar] [CrossRef]
- Hassan, Q.; Jaszczur, M.; Abdulateef, A.M.; Abdulateef, J.; Hasan, A.; Mohamad, A. An Analysis of Photovoltaic/Supercapacitor Energy System for Improving Self-Consumption and Self-Sufficiency. Energy Rep. 2022, 8, 680–695. [Google Scholar] [CrossRef]
- Su, J.; Beshley, M.; Przystupa, K.; Kochan, O.; Rusyn, B.; Stanisławski, R.; Yaremko, O.; Majka, M.; Beshley, H.; Demydov, I.; et al. 5G Multi-Tier Radio Access Network Planning Based on Voronoi Diagram. Measurement 2022, 192, 110814. [Google Scholar] [CrossRef]
- Romanchuk, V.; Beshley, M.; Polishuk, A.; Seliuchenko, M. Method for Processing Multiservice Traffic in Network Node Based on Adaptive Management of Buffer Resource. In Proceedings of the 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), Lviv, Ukraine, 20–24 February 2018; pp. 1118–1122. [Google Scholar] [CrossRef]
- Wang, T.P.; Wells, A.; Bediones, D. 5,000-Hour Stability Tests of Metal Sheathed Thermocouples at Respective Temperatures of 538 °C and 875 °C. In Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, Orlando, FL, USA, 3 June 1991. [Google Scholar] [CrossRef]
- Jun, S.; Kochan, O.; Kochan, V.; Wang, C. Development and Investigation of the Method for Compensating Thermoelectric Inhomogeneity Error. Int. J. Thermophys. 2016, 37, 10. [Google Scholar] [CrossRef]
- Wang, T.P.; Bediones, D.P.; Henrikson, H.J.; Janhunen, E.J.; Bachalo, K.; Swirla, P. Stabilized metal sheathed type K and E thermocouples improve turbine efficiency. ISA Tech/Expo Technol. Update 1997, 5, 439–448. [Google Scholar]
- Jun, S.; Kochan, O.; Kochan, R. Thermocouples with Built-in Self-Testing. Int. J. Thermophys. 2016, 37, 37. [Google Scholar] [CrossRef]
- Jun, S.; Kochan, O. The Mechanism of the Occurrence of Acquired Thermoelectric Inhomogeneity of Thermocouples and Its Effect on the Result of Temperature Measurement. Meas. Tech. 2015, 57, 1160–1166. [Google Scholar] [CrossRef]
- Shu, C.; Kochan, O. Method of thermocouples self verification on operation place. Sens. Transducers 2013, 160, 55–61. [Google Scholar]
- Zhao, H.; Guo, S. An Optimized Grey Model for Annual Power Load Forecasting. Energy 2016, 107, 272–286. [Google Scholar] [CrossRef]
- Kuster, C.; Rezgui, Y.; Mourshed, M. Electrical Load Forecasting Models: A Critical Systematic Review. Sustain. Cities Soc. 2017, 35, 257–270. [Google Scholar] [CrossRef]
- Xiong, G.; Przystupa, K.; Teng, Y.; Xue, W.; Huan, W.; Feng, Z.; Beshley, M. Online Measurement Error Detection for the Electronic Transformer in a Smart Grid. Energies 2021, 14, 3551. [Google Scholar] [CrossRef]
- Song, K.B.; Ha, S.K.; Park, J.W.; Kweon, D.J.; Kim, K.H. Hybrid load forecasting method with analysis of temperature sensitivities. IEEE Trans. Power Syst. 2006, 21, 869–876. [Google Scholar] [CrossRef]
- Sheikh, S.K.; Unde, M.G. Short-term load forecasting using ann technique. Int. J. Eng. Sci. Emerg. Technol. 2012, 1, 97–107. [Google Scholar] [CrossRef]
- Al-Hamadi, H.M.; Soliman, S.A. Long-Term/Mid-Term Electric Load Forecasting Based on Short-Term Correlation and Annual Growth. Electr. Power Syst. Res. 2005, 74, 353–361. [Google Scholar] [CrossRef]
- Fang, M.T.; Chen, Z.J.; Przystupa, K.; Li, T.; Majka, M.; Kochan, O. Examination of abnormal behavior detection based on improved YOLOv3. Electronics 2021, 10, 197. [Google Scholar] [CrossRef]
- Przystupa, K.; Ambrożkiewicz, B.; Litak, G. Diagnostics of transient states in hydraulic pump system with Short Time Fourier Transform. Adv. Sci. Technol. Res. J. 2020, 14, 178–183. [Google Scholar] [CrossRef]
- de Oliveira, E.M.; Oliveira, F.L.C. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 2018, 144, 776–788. [Google Scholar] [CrossRef]
- Guan, C.; Luh, P.B.; Michel, L.D.; Chi, Z. Hybrid Kalman Filters for Very Short-Term Load Forecasting and Prediction Interval Estimation. IEEE Trans. Power Syst. 2013, 28, 3806–3817. [Google Scholar] [CrossRef]
- Fan, G.F.; Qing, S.; Wang, H.; Hong, W.C.; Li, H.J. Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting. Energies 2013, 6, 1887–1901. [Google Scholar] [CrossRef]
- Li, L.L.; Zhao, X.; Tseng, M.L.; Tan, R.R. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. J. Clean. Prod. 2020, 242, 118447. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, G. Short-term wind power forecasting approach based on Seq2Seq model using NWP data. Energy 2020, 213, 118371. [Google Scholar] [CrossRef]
- Kim, J.; Moon, J.; Hwang, E.; Kang, P. Recurrent inception convolution neural network for multi short-term load forecasting. Energy Build. 2019, 194, 328–341. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Zhao, H.; Zou, L.; Li, G.; Yang, X.; Wu, D. A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput. 2017, 21, 4387–4398. [Google Scholar] [CrossRef]
- Mavrovouniotis, M.; Li, C.; Yang, S.A. Survey of Swarm Intelligence for Dynamic Optimization: Algorithms and Applications. Swarm Evol. Comput. 2017, 33, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November 1995. [Google Scholar]
- Yang, X.S.; Slowik, A. Firefly algorithm. In Swarm Intelligence Algorithms; CRC Press: Boca Raton, FL, USA, 2020; pp. 163–174. [Google Scholar]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Tang, X.; Dai, Y.; Wang, T.; Chen, Y. Short-term power load forecasting based on multi-layer bidirectional recurrent neural network. IET Gener. Transm. Distrib. 2019, 13, 384–3854. [Google Scholar] [CrossRef]
- Mi, J.; Fan, L.; Duan, X.; Qiu, Y. Short-Term Power Load Forecasting Method Based on Improved Exponential Smoothing Grey Model. Math. Probl. Eng. 2018, 2018, 3894723. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Wang, J.; McMenemy, K. Short Medium and Long Term Load Forecasting Model and Virtual Load Forecaster Based on Radial Basis Function Neural Networks. Int. J. Electr. Power Energy Syst. 2010, 32, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Nie, H.; Liu, G.; Liu, X.; Wang, Y. Hybrid of ARIMA and SVMs for short-term load forecasting. Energy Procedia 2012, 16, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- Mordjaoui, M.; Haddad, S.; Medoued, A.; Laouafi, A. Electric Load Forecasting by Using Dynamic Neural Network. Int. J. Hydrog. Energy 2017, 42, 17655–17663. [Google Scholar] [CrossRef]
- Yang, Y.; Che, J.; Deng, C.; Li, L. Sequential grid approach based support vector regression for short-term electric load forecasting. Appl. Energy 2019, 238, 1010–1021. [Google Scholar] [CrossRef]
- Niu, D.; Wang, Y.; Wu, D.D. Power load forecasting using support vector machine and ant colony optimization. Expert Syst. Appl. 2010, 37, 2531–2539. [Google Scholar] [CrossRef]
- Li, H.Z.; Guo, S.; Li, C.J.; Sun, J.Q. A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl. Based Syst. 2013, 37, 378–387. [Google Scholar] [CrossRef]
- Li, C.; Li, S.; Liu, Y. A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting. Appl. Intell. 2016, 45, 1166–1178. [Google Scholar] [CrossRef]
- Dai, Y.; Zhao, P. A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization. Appl. Energy 2020, 279, 115332. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Niu, D.; Tan, Z. An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl. Energy 2012, 94, 65–70. [Google Scholar] [CrossRef]
- Raza, M.Q.; Nadarajah, M.; Hung, D.Q.; Baharudin, Z. An Intelligent Hybrid Short-Term Load Forecasting Model for Smart Power Grids. Sustain. Cities Soc. 2017, 31, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wei, Y.M.; Li, D.; Tan, Z.; Zhou, J. Short term electricity load forecasting using a hybrid model. Energy 2018, 158, 774–781. [Google Scholar] [CrossRef]
- Attia, A.-F.; El Sehiemy, R.A.; Hasanien, H.M. Optimal Power Flow Solution in Power Systems Using a Novel Sine-Cosine Algorithm. Int. J. Electr. Power Energy Syst. 2018, 99, 331–343. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A. Advances in Sine Cosine Algorithm: A Comprehensive Survey. Artif. Intell. Rev. 2021, 54, 2567–2608. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Oliva, D.; Xiong, S. An Improved Opposition-Based Sine Cosine Algorithm for Global Optimization. Expert Syst. Appl. 2017, 90, 484–500. [Google Scholar] [CrossRef]
- Yiqiang, G.; Yanbin, W.; Zhengshan, J.; Jun, W.; Luyan, Z. Remote Sensing Image Classification by the Chaos Genetic Algorithm in Monitoring Land Use Changes. Math. Comput. Model. 2010, 51, 1408–1416. [Google Scholar] [CrossRef]
- Misaghi, M.; Yaghoobi, M. Improved Invasive Weed Optimization Algorithm (IWO) Based on Chaos Theory for Optimal Design of PID Controller. J. Comput. Des. Eng. 2019, 6, 284–295. [Google Scholar] [CrossRef]
- Kaveh, A.; Sheikholeslami, R.; Talatahari, S.; Keshvari-Ilkhichi, M. Chaotic swarming of particles: A new method for size optimization of truss structures. Adv. Eng. Softw. 2014, 67, 136–147. [Google Scholar] [CrossRef]
- Sun, L.; Qin, H.; Przystupa, K.; Cui, Y.; Kochan, O.; Skowron, M.; Su, J. A Hybrid Feature Selection Framework Using Improved Sine Cosine Algorithm with Metaheuristic Techniques. Energies 2022, 15, 3485. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Cheng, J.; Dong, L.; Lapata, M. Long short-term memory-networks for machine reading. arXiv 2016, arXiv:1601.06733. [Google Scholar]
- Xu, Y.; Mou, L.; Li, G.; Chen, Y.; Peng, H.; Jin, Z. Classifying relations via long short term memory networks along shortest dependency paths. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1785–1794. [Google Scholar]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 66–69. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model. Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar] [CrossRef]
- Renaud, O.; Victoria-Feser, M.P. A robust coefficient of determination for regression. J. Stat. Plan. Inference 2010, 140, 1852–1862. [Google Scholar] [CrossRef]
Symbol | Definition | Symbol | Definition |
---|---|---|---|
Position of solution in the dimension at the iteration | Learning rate in LSTM | ||
round of iteration | Training times in the LSTM | ||
Position of the optimum individual in the iteration | Number of nodes in the first hidden layer of the LSTM | ||
Number of solutions | Number of nodes in the second hidden layer of the LSTM | ||
Number of dimensions of the solution | Maximum and minimum values of the power forecast. | ||
Total number of iterations of the SCA | Actual value of electric load | ||
Number of current iteration rounds | Forecasted value of electric load | ||
Regulatory factor | Relative percentage error of the MetaREC | ||
Rdom Factor | Mean absolute percentage error | ||
Random Factor | Root mean square error | ||
Random Factor | Mean absolute error | ||
Multilevel regulatory factor | Coefficient of determination of the MetaREC |
No. | Function | Range | Global Optimal Value |
---|---|---|---|
1 | Sphere | ||
2 | Rastrigin | ||
3 | Quartic | ||
4 | Griewank | ||
5 | Ackley | ||
6 | Step |
No. | Dim | SCA | PSO | FA | WOA | MetaREC | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Var | Mean | Var | Mean | Var | Mean | Var | Mean | Var | ||
1 | . | ||||||||||
50 | |||||||||||
100 | 1.38 × 101 | ||||||||||
2 | 10 | ||||||||||
. | |||||||||||
100 | |||||||||||
3 | 10 | ||||||||||
50 | 1.02 × 10−4 | ||||||||||
100 | 6.88 × 10−5 | ||||||||||
4 | 10 | ||||||||||
50 | |||||||||||
100 | |||||||||||
5 | 10 | . | |||||||||
50 | |||||||||||
100 | |||||||||||
6 | 10 | ||||||||||
50 | |||||||||||
100 |
Time | Actual Load (MW) | WOA_LSTM | SCA_LSTM | MetaREC_LSTM | |||
---|---|---|---|---|---|---|---|
Forecast (MW) | Error | Forecast (MW) | Error | Forecast (MW) | Error | ||
0:00 | 59.60 | 61.32 | 2.89% | 60.83 | 2.05% | 59.61 | 0.02% |
1:00 | 57.94 | 57.74 | –0.33% | 57.21 | –1.25% | 56.99 | –1.64% |
2:00 | 55.65 | 56.08 | 0.77% | 54.35 | 2.33% | 53.93 | –3.09% |
3:00 | 53.90 | 53.54 | –0.66% | 52.91 | –1.83% | 52.79 | –2.06% |
4:00 | 52.88 | 52.5 | –0.71% | 52.31 | –1.08% | 52.12 | –1.44% |
5:00 | 55.01 | 53.39 | –2.92% | 52.83 | –3.97% | 53.41 | –2.90% |
6:00 | 60.13 | 57.24 | –4.79% | 57.23 | –4.82% | 58.21 | –3.18% |
7:00 | 67.51 | 65.56 | –2.88% | 64.93 | –3.82% | 65.43 | –3.08% |
8:00 | 80.01 | 80.98 | 1.21% | 80.47 | 0.57% | 80.00 | –0.02% |
9:00 | 86.15 | 86.19 | 0.05% | 85.61 | –0.63% | 86.24 | 0.10% |
10:00 | 90.39 | 89.23 | –1.27% | 88.59 | –1.99% | 89.49 | –0.99% |
11:00 | 89.52 | 88.67 | –0.94% | 88.00 | –1.69% | 89.04 | –0.54% |
12:00 | 76.43 | 75.90 | –0.68% | 75.31 | –1.46% | 76.09 | –0.44% |
13:00 | 82.42 | 84.64 | 2.69% | 83.81 | 1.69% | 83.71 | 1.56% |
14:00 | 84.78 | 84.55 | –0.26% | 84.54 | –0.28% | 85.18 | 0.47% |
15:00 | 86.19 | 84.61 | –1.83% | 84.25 | –2.25% | 85.20 | –1.14% |
16:00 | 85.93 | 87.65 | 2.00% | 86.39 | 0.53% | 87.11 | 1.37% |
17:00 | 87.39 | 85.14 | –2.57% | 84.80 | –2.96% | 85.30 | –2.39% |
18:00 | 85.18 | 82.53 | –3.10% | 82.03 | –3.69% | 83.06 | –2.49% |
19:00 | 87.8 | 86.87 | –1.06% | 86.50 | –1.48% | 87.25 | –0.63% |
20:00 | 84.94 | 86.15 | –1.42% | 85.46 | 0.60% | 85.88 | 1.11% |
21:00 | 83.26 | 83.27 | 0.01% | 82.66 | –0.72% | 82.18 | –1.29% |
22:00 | 75.92 | 75.98 | 0.07% | 75.37 | –0.73% | 75.20 | –0.95% |
23:00 | 68.54 | 68.58 | 0.06% | 67.87 | –0.98% | 68.25 | –0.42% |
WOA_LSTM | SCA_LSTM | MetaREC_LSTM | |
---|---|---|---|
Minimum Value | 0.01% | 0.28% | 0.02% |
First Quartile | 0.58% | 0.73% | 0.52% |
Median | 1.14% | 1.59% | 1.22% |
Third Quartile | 2.60% | 2.27% | 2.14% |
Maximum Value | 4.79% | 4.82% | 3.18% |
Interquartile Range | 2.02% | 1.54% | 1.62% |
Mean Absolute Error | 1.47% | 1.81% | 1.39% |
Method | MAPE | RMSE | MAE | |
---|---|---|---|---|
BP | 0.02900 | 2.6991 | 2.0110 | 0.9577 |
LSTM | 0.01934 | 1.7668 | 1.3849 | 0.9818 |
WOA_LSTM | 0.01468 | 1.3886 | 1.0810 | 0.9888 |
SCA_LSTM | 0.01809 | 1.5513 | 1.3042 | 0.9860 |
MetaREC_LSTM | 0.01389 | 1.1797 | 0.9840 | 0.9919 |
Method | MAPE | RMSE | MAE | |
---|---|---|---|---|
BP | 0.0330 | 3.2079 | 2.4763 | 0.9367 |
LSTM | 0.0313 | 3.0010 | 2.4797 | 0.9446 |
WOA_LSTM | 0.0162 | 1.6546 | 1.2513 | 0.9836 |
SCA_LSTM | 0.0159 | 1.6620 | 1.1427 | 0.9831 |
MetaREC_LSTM | 0.0151 | 1.6087 | 1.1011 | 0.9840 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Qin, H.; Przystupa, K.; Majka, M.; Kochan, O. Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network. Sensors 2022, 22, 7900. https://doi.org/10.3390/s22207900
Sun L, Qin H, Przystupa K, Majka M, Kochan O. Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network. Sensors. 2022; 22(20):7900. https://doi.org/10.3390/s22207900
Chicago/Turabian StyleSun, Lichao, Hang Qin, Krzysztof Przystupa, Michal Majka, and Orest Kochan. 2022. "Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network" Sensors 22, no. 20: 7900. https://doi.org/10.3390/s22207900
APA StyleSun, L., Qin, H., Przystupa, K., Majka, M., & Kochan, O. (2022). Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network. Sensors, 22(20), 7900. https://doi.org/10.3390/s22207900