A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling
Abstract
:1. Introduction
2. Environment Estimation and Force Prediction Controller
2.1. Kelvin–Voigt Force Model
2.2. Hunt–Crossley Force Model
2.3. Environment Estimator
2.4. Force Feedback and Force Predictor
3. Transparency Performance
3.1. Prediction Error
- Considering the slave position () and force () at each time-step (), and using these as the slave reference;
- Searching through the dataset of the master positions, backwards from the slave reference time-step, for the first closest master position () to .
- Comparing the direction of motion of the slave and master to ensure the two systems were travelling in the same direction. If the directions differ, then the next closest slave and master positions are used.
- The time-step when the positions are closest, and the direction of travel is consistent, is , and is used as the master reference;
- Finding the error between the slave force () and the master force () at their respective reference time-steps.
4. Experiments
4.1. Experimental Setup
4.2. Experimental Procedure
- Direct force feedback from the slave to the master;
- A spring-based adaptor acting between the slave and master;
- Virtual environments from the EWRLS estimation–prediction methodology, with both the Kelvin–Voigt and Hunt–Crossley force models.
5. Results and Discussion
5.1. Direct Force Feedback
5.2. Spring-Based Adaptor
5.3. Kelvin–Voigt Model
5.4. Hunt–Crossley Model
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, W.J.; Kwak, K.S.; Lim, S.C. Vision-based suture tensile force estimation in robotic surgery. Sensors 2020, 21, 110. [Google Scholar] [CrossRef] [PubMed]
- Abdi, E.; Kulić, D.; Croft, E. Haptics in Teleoperated Medical Interventions: Force Measurement, Haptic Interfaces and Their Influence on User’s Performance. IEEE Trans. Biomed. Eng. 2020, 67, 3438–3451. [Google Scholar] [CrossRef] [PubMed]
- Dalvand, M.M.; Shirinzadeh, B. Motion Control Analysis of a Parallel Robot Assisted Minimally Invasive Surgery/Microsurgery System (PRAMiSS). Robot. Comput. Integr. Manuf. 2013, 29, 318–327. [Google Scholar] [CrossRef]
- Cai, K.; Tian, Y.; Wang, F.; Zhang, D.; Liu, X.; Shirinzadeh, B. Design and control of a 6-degree-of-freedom precision positioning system. Robot. Comput.-Integr. Manuf. 2017, 44, 77–96. [Google Scholar] [CrossRef] [Green Version]
- Pinskier, J.; Shirinzadeh, B.; Clark, L.; Qin, Y. Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism. Mechatronics 2018, 50, 55–68. [Google Scholar] [CrossRef]
- Clark, L.; Shirinzadeh, B.; Bhagat, U.; Smith, J.; Zhong, Y. Development and control of a two DOF linear–angular precision positioning stage. Mechatronics 2015, 32, 34–43. [Google Scholar] [CrossRef]
- Van der Meijden, O.; Schijven, M. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: A current review. Surg. Endosc. 2009, 23, 1180–1190. [Google Scholar] [CrossRef] [Green Version]
- Dalvand, M.M.; Shirinzadeh, B.; Nahavandi, S.; Smith, J. Effects of Realistic Force Feedback in a Robotic Assisted Minimally Invasive Surgery System. Minim. Invasive Ther. Allied Technol. 2014, 23, 127–135. [Google Scholar] [CrossRef]
- Ehrampoosh, A.; Pinskier, J.; Shirinzadeh, B.; Moshinsky, R.; Smith, J.; Zhong, Y.; Lai, L. A novel robotic gripper for automated suturing during minimally invasive mitral valve repair. In Proceedings of the 2019 Australasian Conference on Robotics and Automation (ACRA 2019), Australasian Robotics and Automation Association, Adelaide, Australia, 9–11 December 2019; pp. 1–7. [Google Scholar]
- Ehrampoosh, A. Haptics and Instrumentation for Robotic Minimally Invasive Surgery. Ph.D. Thesis, Monash University, Faculty of Engineering, Department of Mechanical and Aerospace Engineering, Melbourne, Australia, 2022. [Google Scholar]
- Yang, C.; Xie, Y.; Liu, S.; Sun, D. Force modeling, identification, and feedback control of robot-assisted needle insertion: A survey of the literature. Sensors 2018, 18, 561. [Google Scholar] [CrossRef] [Green Version]
- Dalvand, M.; Shirinzadeh, B.; Shamdani, A.H.; Smith, J.; Zhong, Y. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2014, 10, 11–21. [Google Scholar] [CrossRef]
- Patel, R.V.; Atashzar, S.F.; Tavakoli, M. Haptic Feedback and Force-Based Teleoperation in Surgical Robotics. Proc. IEEE 2022, 110, 1012–1027. [Google Scholar] [CrossRef]
- Lawrence, D.A. Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 1993, 9, 624–637. [Google Scholar] [CrossRef] [Green Version]
- Hashtrudi-Zaad, K.; Salcudean, S.E. Transparency in time-delayed systems and the effect of local force feedback for transparent teleoperation. IEEE Trans. Robot. Autom. 2002, 18, 108–114. [Google Scholar] [CrossRef]
- Hashtrudi-Zaad, K.; Salcudean, S.E. Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. Int. J. Robot. Res. 2001, 20, 419–445. [Google Scholar] [CrossRef]
- Hashtrudi-Zaad, K.; Salcudean, S.E. On the use of local force feedback for transparent teleoperation. In Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 10–15 May 1999; Volume 3, pp. 1863–1869. [Google Scholar]
- Clark, L.; Shirinzadeh, B.; Tian, Y.; Oetomo, D. Laser-based sensing, measurement, and misalignment control of coupled linear and angular motion for ultrahigh precision movement. IEEE/ASME Trans. Mechatronics 2014, 20, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.J.; Spong, M.W. Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 1989, 34, 494–501. [Google Scholar] [CrossRef]
- Bavili, R.E.; Akbari, A.; Esfanjani, R.M. Controller design for nonlinear bilateral teleoperation systems via total energy shaping. Mech. Syst. Signal Process. 2021, 150, 107239. [Google Scholar] [CrossRef]
- Yang, Y.; Constantinescu, D.; Shi, Y. Input-to-State Stable Bilateral Teleoperation by Dynamic Interconnection and Damping Injection: Theory and Experiments. IEEE Trans. Ind. Electron. 2020, 67, 790–799. [Google Scholar] [CrossRef]
- Sun, D.; Naghdy, F.; Du, H. Application of wave-variable control to bilateral teleoperation systems: A survey. Annu. Rev. Control 2014, 38, 12–31. [Google Scholar] [CrossRef]
- Mehrdad, S.; Liu, F.; Pham, M.T.; Lelevé, A.; Atashzar, S.F. Review of advanced medical telerobots. Appl. Sci. 2020, 11, 209. [Google Scholar] [CrossRef]
- Atashzar, S.F.; Shahbazi, M.; Tavakoli, M.; Patel, R.V. A Passivity-Based Approach for Stable Patient-Robot Interaction in Haptics-Enabled Rehabilitation Systems: Modulated Time-Domain Passivity Control. IEEE Trans. Control Syst. Technol. 2017, 25, 991–1006. [Google Scholar] [CrossRef]
- Atashzar, S.F.; Polushin, I.G.; Patel, R.V. A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis. IEEE Trans. Robot. 2017, 33, 49–66. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, B.; Mei, X.; Song, Q. Realization of Force Detection and Feedback Control for Slave Manipulator of Master/Slave Surgical Robot. Sensors 2021, 21, 7489. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; He, X.; Gueaieb, W. Trends in the control schemes for bilateral teleoperation with time delay. In Autonomous and Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 146–155. [Google Scholar]
- Ehrampoosh, A.; Shirinzadeh, B.; Pinskier, J.; Smith, J.; Moshinsky, R.; Zhong, Y. A Force-Feedback Methodology for Teleoperated Suturing Task in Robotic-Assisted Minimally Invasive Surgery. Sensors 2022, 22, 7829. [Google Scholar] [CrossRef] [PubMed]
- Ehrampoosh, A.; Shirinzadeh, B.; Pinskier, J.; Smith, J.; Moshinsky, R.; Zhong, Y. A Force-Sensing Semi-Automated Robotic Needle Driver for Minimally Invasive Surgery. In Proceedings of the 25th International Conference on Mechatronics Technology ICMT 2022, Kaohsiung, Taiwan, 18–21 November 2022. [Google Scholar]
- Uddin, R.; Ryu, J. Predictive control approaches for bilateral teleoperation. Annu. Rev. Control 2016, 42, 82–99. [Google Scholar] [CrossRef]
- Ganjefar, S.; Momeni, H.; Sharifi, F.J.; Beheshti, M.H. Behavior of Smith predictor in teleoperation systems with modeling and delay time errors. In Proceedings of the Control Applications CCA 2003 IEEE Conference, Istanbul, Turkey, 23–25 June 2003; Volume 2, pp. 1176–1180. [Google Scholar]
- Bowthorpe, M.; Tavakoli, M.; Becher, H.; Howe, R. Smith predictor based control in teleoperated image-guided beating-heart surgery. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 5825–5830. [Google Scholar]
- Arcara, P.; Melchiorri, C. Control schemes for teleoperation with time delay: A comparative study. Robot. Auton. Syst. 2002, 38, 49–64. [Google Scholar] [CrossRef]
- Smith, A.C.; Hashtrudi-Zaad, K. Adaptive teleoperation using neural network-based predictive control. In Proceedings of the Control Applications CCA, Toronto, ON, Canada, 28–31 August 2005; pp. 1269–1274. [Google Scholar]
- Smith, A.C.; Hashtrudi-Zaad, K. Smith predictor type control architectures for time delayed teleoperation. Int. J. Robot. Res. 2006, 25, 797–818. [Google Scholar] [CrossRef]
- Hwang, W.; Lim, S.C. Inferring interaction force from visual information without using physical force sensors. Sensors 2017, 17, 2455. [Google Scholar] [CrossRef] [Green Version]
- Love, L.J.; Book, W.J. Force reflecting teleoperation with adaptive impedance control. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2004, 34, 159–165. [Google Scholar] [CrossRef]
- Haddadi, A.; Hashtrudi-Zaad, K. Online contact impedance identification for robotic systems. In Proceedings of the Intelligent Robots and Systems 2008 IROS, Nice, France, 22–26 September 2008; pp. 974–980. [Google Scholar]
- Jiang, J.; Zhang, Y. A revisit to block and recursive least squares for parameter estimation. Comput. Electr. Eng. 2004, 30, 403–416. [Google Scholar] [CrossRef]
- Erickson, D.; Weber, M.; Sharf, I. Contact stiffness and damping estimation for robotic systems. Int. J. Robot. Res. 2003, 22, 41–57. [Google Scholar] [CrossRef]
- Yamamoto, T.; Bernhardt, M.; Peer, A.; Buss, M.; Okamura, A.M. Techniques for environment parameter estimation during telemanipulation. In Proceedings of the Biomedical Robotics and Biomechatronics BioRob 2008, 2nd IEEE RAS & EMBS International Conference on IEEE, Scottsdale, AZ, USA, 19–22 October 2008; pp. 217–223. [Google Scholar]
- Diolaiti, N.; Melchiorri, C.; Stramigioli, S. Contact impedance estimation for robotic systems. IEEE Trans. Robot. 2005, 21, 925–935. [Google Scholar] [CrossRef]
- Haslach, H.W. Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech. Model. Mechanobiol. 2005, 3, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, G.; Sharf, I. Literature survey of contact dynamics modelling. Mech. Mach. Theory 2002, 37, 1213–1239. [Google Scholar] [CrossRef]
- Yamamoto, T.; Vagvolgyi, B.; Balaji, K.; Whitcomb, L.L.; Okamura, A.M. Tissue property estimation and graphical display for teleoperated robot-assisted surgery. In Proceedings of the Robotics and Automation ICRA’09, Kobe, Japan, 12–17 May 2009; pp. 4239–4245. [Google Scholar]
- Haddadi, A.; Hashtrudi-Zaad, K. A new method for online parameter estimation of hunt-crossley environment dynamic models. In Proceedings of the Intelligent Robots and Systems IROS, Nice, France, 22–26 September 2008; pp. 981–986. [Google Scholar]
- Haddadi, A.; Hashtrudi-Zaad, K. Real-time identification of Hunt–Crossley dynamic models of contact environments. IEEE Trans. Robot. 2012, 28, 555–566. [Google Scholar] [CrossRef]
- Achhammer, A.; Weber, C.; Peer, A.; Buss, M. Improvement of model-mediated teleoperation using a new hybrid environment estimation technique. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 5358–5363. [Google Scholar]
- Fu, Y.; Wu, B.; Lin, W. A continuous switching contact model for virtual environment based teleoperation. Complex Intell. Syst. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Li, Q.; Liu, C.; Yang, C.; Chen, F.; Ritter, H. Robotic dexterous manipulation: From tele-operation to autonomous learning and adaptive control. Complex Intell. Syst. 2022, 8, 2809–2811. [Google Scholar] [CrossRef]
- Fu, Y.; Lin, W.; Yu, X.; Rodríguez-Andina, J.J.; Gao, H. Robot-Assisted Teleoperation Ultrasound System Based on Fusion of Augmented Reality and Predictive Force. IEEE Trans. Ind. Electron. 2022, 1–8. [Google Scholar] [CrossRef]
- Schwalb, W.H. Design and Analysis of an Experimental Force-Feedback Enabled Surgical Robot for Minimally Invasive Surgery. Masters Thesis, Monash University, Faculty of Engineering, Department of Mechanical and Aerospace Engineering, Melbourne, Australia, 2016. [Google Scholar]
- Hogan, N. Controlling impedance at the man/machine interface. In Proceedings of the Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989; pp. 1626–1631. [Google Scholar]
- Schwalb, W.; Shirinzadeh, B.; Smith, J. A Force-Sensing Surgical Tool with a Proximally Located Force/Torque Sensor. Int. J. Med. Rob. Comput. Assist. Surg. 2017, 13. [Google Scholar] [CrossRef]
- Schwalb, W.; Shirinzadeh, B.; Smith, J. Surgical slave with a novel method for force sensing and trocar friction reduction. In Advanced Materials Research; Trans Tech Publ.: Zurich, Switzerland, 2013; Volume 622, pp. 1362–1367. [Google Scholar]
- Schwalb, W.; Shirinzadeh, B.; Zhong, Y.; Smith, J. Compensation and calibration of gravitational forces in a force-feedback enabled surgical robot. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, 9–12 July 2013; pp. 1655–1660. [Google Scholar]
- Scalera, L.; Seriani, S.; Gallina, P.; Di Luca, M.; Gasparetto, A. An experimental setup to test dual-joystick directional responses to vibrotactile stimuli. IEEE Trans. Haptics 2018, 11, 378–387. [Google Scholar] [CrossRef]
Kelvin–Voigt | Hunt–Crossley | |
---|---|---|
Parameter | Initial Value |
---|---|
Environment Parameters | |
K | 0.05 N mm |
B | 0.01 N s mm |
n | |
EWRLS Algorithm | |
I | |
Trial 1 (*) | Trial 2 | Trial 3 | |
---|---|---|---|
RMSE | 0.694 N | 0.571 N | 0.560 N |
Mean Error | 0.060 N | 0.036 N | −0.106 N |
Trial 1 (*) | Trial 2 | Trial 3 | |
---|---|---|---|
RMSE | 0.427 N | 0.452 N | 0.392 N |
Mean Error | −0.026 N | −0.066 N | 0.005 N |
Trial 1 (*) | Trial 2 | Trial 3 | |
---|---|---|---|
RMSE | 0.356 N | 0.628 N | 0.606 N |
Mean Error | 0.060 N | 0.122 N | 0.087 N |
Mean Speed of Motion | 2.4 mm s | 3.9 mm s | 2.2 mm s |
Max. Environmental Force | 2.51 N | 3.31 N | 3.40 N |
Trial 1 | Trial 2 | Trial 3 | |
---|---|---|---|
RMSE | 0.076 N | 0.115 N | 0.103 N |
Mean Error | 0.002 N | 0.034 N | −0.002 N |
Mean Speed of Motion | 1.50 mm s | 1.55 mm s | 2.24 mm s |
Max. Environmental Force | 2.69 N | 2.30 N | 2.48 N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batty, T.; Ehrampoosh, A.; Shirinzadeh, B.; Zhong, Y.; Smith, J. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling. Sensors 2022, 22, 9770. https://doi.org/10.3390/s22249770
Batty T, Ehrampoosh A, Shirinzadeh B, Zhong Y, Smith J. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling. Sensors. 2022; 22(24):9770. https://doi.org/10.3390/s22249770
Chicago/Turabian StyleBatty, Taran, Armin Ehrampoosh, Bijan Shirinzadeh, Yongmin Zhong, and Julian Smith. 2022. "A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling" Sensors 22, no. 24: 9770. https://doi.org/10.3390/s22249770
APA StyleBatty, T., Ehrampoosh, A., Shirinzadeh, B., Zhong, Y., & Smith, J. (2022). A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling. Sensors, 22(24), 9770. https://doi.org/10.3390/s22249770