Point Cloud Densification Algorithm for Multiple Cameras and Lidars Data Fusion
Abstract
:1. Introduction
- Point cloud densification—creation of point clouds based on pairs of stereo vision images and camera calibration data, then combining point clouds;
- Coloring of lidar point cloud based using colors from camera images;
- Projection of 3D lidar data on 2D, then fusing 2D images.
- Point Cloud Library (PCL) [20]—a popular library for point cloud processing, PCL is a free and open-source solution. Its functionalities are focused on laser scanner data, although it also contains modules for processing stereo vision data. PCL is a C++ language library, although unofficial Python 3 language bindings are also available on the web, e.g., [21], which allows you to use some of its functionality from within the Python language.
- OpenCV [22]—one of the most popular open libraries for processing and extracting data from images. It also includes algorithms for estimating the shapes of objects in two and three dimensions from images from one or multiple cameras and algorithms for determining the disparity map from stereo vision images and 3D scene reconstruction. OpenCV is a C++ library with Python bindings.
2. Materials and Methods
2.1. New Algorithm for Stereo Vision
2.1.1. Disparity Map Calculation Based on Matching
2.1.2. Improving the Quality of Matching through Edge Detection
2.1.3. Performance Improvement, Reducing Length of Matched Sequences
2.1.4. Parallel Algorithm for 2D Images Matching
3. Results
3.1. Datasets
3.1.1. University of Tsukuba ‘Head and Lamp’
3.1.2. Middlebury 2021 Mobile Dataset
3.1.3. KITTI
3.2. Quality Evaluation Method
3.3. Quality Tests
3.4. Method of Performance Evaluation
3.5. Performance Tests
4. Discussion
5. Summary
- The creation of point clouds based on pairs of stereo vision images and camera calibration data;
- Combining several point clouds together;
- Coloring of lidar point clouds based on camera images;
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaukat, A.; Blacker, P.C.; Spiteri, C.; Gao, Y. Towards camera-LIDAR fusion-based terrain modelling for planetary surfaces: Review and analysis. Sensors 2016, 16, 1952. [Google Scholar] [CrossRef]
- Ounoughi, C.; Yahia, S.B. Data fusion for ITS: A systematic literature review. Inf. Fusion 2023, 89, 267–291. [Google Scholar] [CrossRef]
- Kolar, P.; Benavidez, P.; Jamshidi, M. Survey of datafusion techniques for laser and vision based sensor integration for autonomous navigation. Sensors 2020, 20, 2180. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Bueno, G.; Deniz, O.; Singh, S.; Monga, H.; Hrisheekesha, P.; Pedraza, A. A review of image fusion: Methods, applications and performance metrics. Digit. Signal Process. 2023, 137, 104020. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J. Segmentation-based filtering of airborne LiDAR point clouds by progressive densification of terrain segments. Remote Sens. 2014, 6, 1294–1326. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Wang, Z.; Xie, X.; Li, D.; Xu, L. Airborne LiDAR: State-of-the-art of system design, technology and application. Meas. Sci. Technol. 2020, 32, 032002. [Google Scholar] [CrossRef]
- Lazaros, N.; Sirakoulis, G.C.; Gasteratos, A. Review of stereo vision algorithms: From software to hardware. Int. J. Optomechatron. 2008, 2, 435–462. [Google Scholar] [CrossRef]
- Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970, 48, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Tippetts, B.; Lee, D.J.; Lillywhite, K.; Archibald, J. Review of stereo vision algorithms and their suitability for resource-limited systems. J. Real-Time Image Process. 2016, 11, 5–25. [Google Scholar] [CrossRef]
- Stilla, U.; Xu, Y. Change detection of urban objects using 3D point clouds: A review. ISPRS J. Photogramm. Remote Sens. 2023, 197, 228–255. [Google Scholar] [CrossRef]
- Kuang, X.; Zhu, H.; Yu, B.; Li, B. Fast Clustering for Cooperative Perception Based on LiDAR Adaptive Dynamic Grid Encoding. Cogn. Comput. 2024, 16, 546–565. [Google Scholar] [CrossRef]
- Chi, F.; Wang, Y.; Nasiopoulos, P.; Leung, V.C. Federated Cooperative 3D Object Detection for Autonomous Driving. In Proceedings of the 2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP), Rome, Italy, 17–20 September 2023; pp. 1–6. [Google Scholar]
- Ding, J.; Zhang, J.; Ye, L.; Wu, C. Kalman-Based Scene Flow Estimation for Point Cloud Densification and 3D Object Detection in Dynamic Scenes. Sensors 2024, 24, 916. [Google Scholar] [CrossRef]
- Saleh, S.; Bader, Q.; Elhabiby, M.; Noureldin, A. 5G Multi-BS Positioning: A Decentralized Fusion Scheme. arXiv 2023, arXiv:2303.04192. [Google Scholar]
- Chen, N.; Wang, N.; He, Y.; Ding, X.; Kong, J. An improved progressive triangular irregular network densification filtering algorithm for airborne LiDAR data. Front. Earth Sci. 2023, 10, 1015153. [Google Scholar] [CrossRef]
- Duan, J.; Huang, Y.; Wang, Y.; Ye, X.; Yang, H. Multipath-Closure Calibration of Stereo Camera and 3D LiDAR Combined with Multiple Constraints. Remote Sens. 2024, 16, 258. [Google Scholar] [CrossRef]
- Lou, L.; Li, Y.; Zhang, Q.; Wei, H. Slam and 3d semantic reconstruction based on the fusion of lidar and monocular vision. Sensors 2023, 23, 1502. [Google Scholar] [CrossRef]
- Cazzato, D.; Bono, F. An Application-Driven Survey on Event-Based Neuromorphic Computer Vision. Information 2024, 15, 472. [Google Scholar] [CrossRef]
- Alaba, S.Y.; Gurbuz, A.C.; Ball, J.E. Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection. World Electr. Veh. J. 2024, 15, 20. [Google Scholar] [CrossRef]
- Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011. [Google Scholar]
- John Stowers, S. Python Bindings to the Point Cloud Library. Available online: https://strawlab.github.io/python-pcl/ (accessed on 22 January 2024).
- Bradski, G. The openCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Poggi, M.; Tosi, F.; Batsos, K.; Mordohai, P.; Mattoccia, S. On the synergies between machine learning and binocular stereo for depth estimation from images: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5314–5334. [Google Scholar] [CrossRef]
- Heyduk, A. Metody stereowizyjne w analizie składu ziarnowego. Syst. Wspomagania Inżynierii Prod. 2017, 6, 103–113. [Google Scholar]
- McCarl, B.A.; Spreen, T.H. Applied Mathematical Programming Using Algebraic Systems; Texas A&M University: College Station, TX, USA, 1997. [Google Scholar]
- Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; Volume 15, pp. 147–152. [Google Scholar]
- Nakamura, Y.; Matsuura, T.; Satoh, K.; Ohta, Y. Occlusion detectable stereo-occlusion patterns in camera matrix. In Proceedings of the CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–20 June 1996; pp. 371–378. [Google Scholar]
- Scharstein, D. Middlebury Stereo Page. 2001. Available online: http://vision.middlebury.edu/stereo/data (accessed on 4 January 2024).
- Geiger, A. Kitty Dataset Page. 2012. Available online: https://www.cvlibs.net/datasets/kitti/ (accessed on 9 January 2024).
- Scharstein, D.; Hirschmüller, H.; Kitajima, Y.; Krathwohl, G.; Nešić, N.; Wang, X.; Westling, P. High-resolution stereo datasets with subpixel-accurate ground truth. In Proceedings of the Pattern Recognition: 36th German Conference, GCPR 2014, Münster, Germany, 2–5 September 2014; Proceedings 36. Springer: Berlin/Heidelberg, Germany, 2014; pp. 31–42. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar]
- Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 2002, 47, 7–42. [Google Scholar] [CrossRef]
- Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing Tool. In Proceedings of the Eurographics Italian Chapter Conference, Salerno, Italy, 2–4 July 2008. [Google Scholar] [CrossRef]
- Team, O.D. OpenPCDet: An Open-Source Toolbox for 3D Object Detection from Point Clouds. 2020. Available online: https://github.com/open-mmlab/OpenPCDet (accessed on 2 September 2024).
Algorithm | ||||
---|---|---|---|---|
Stereo PCD (with edges) | 15.91 ± 11.77 | 0.49 ± 0.16 | 0.61 ± 0.16 | 0.71 ± 0.16 |
Stereo PCD (without edges) | 17.12 ± 10.07 | 0.45 ± 0.16 | 0.57 ± 0.16 | 0.67 ± 0.15 |
OpenCV SGBM (all) | 3.31 ± 2.56 | 0.75 ± 0.09 | 0.81 ± 0.08 | 0.84 ± 0.07 |
OpenCV SGBM (valid) | 3.31 ± 2.56 | 0.86 ± 0.06 | 0.94 ± 0.04 | 0.94 ± 0.02 |
Algorithm | ||||
---|---|---|---|---|
Stereo PCD (with edges) | 22.94 ± 11.40 | 0.38 ± 0.13 | 0.54 ± 0.14 | 0.65 ± 0.14 |
Stereo PCD (without edges) | 24.79 ± 12.74 | 0.34 ± 0.12 | 0.49 ± 0.13 | 0.61 ± 0.13 |
OpenCV SGBM (all) | 13.54 ± 6.02 | 0.36 ± 0.12 | 0.45 ± 0.13 | 0.50 ± 0.13 |
OpenCV SGBM (valid) | 13.54 ± 6.02 | 0.63 ± 0.12 | 0.80 ± 0.10 | 0.89 ± 0.06 |
Dataset | Image Resolution | Algorithm | Time | |
---|---|---|---|---|
Stereo PCD | 0.02 s | 0.90 | ||
Head and lamp | Stereo PCD (200 px) | 0.02 s | 0.90 | |
OpenCV SGBM | 0.03 s | 0.94 | ||
Stereo PCD | 0.33 s | 0.57 | ||
Stereo PCD (200 px) | 0.15 s | 0.57 | ||
KITTI | ≈1240 | Stereo PCD (edges) | 0.40 s | 0.61 |
Stereo PCD (edges + 200 px) | 0.17 s | 0.63 | ||
OpenCV SGBM | 0.20 s | 0.94 | ||
Stereo PCD | 0.79 s | 0.54 | ||
Stereo PCD (200 px) | 0.51 s | 0.54 | ||
Mobile dataset | Stereo PCD (edges) | 1.80 s | 0.58 | |
Stereo PCD (edges + 200 px) | 0.74 s | 0.58 | ||
OpenCV SGBM | 1.22 s | 0.75 | ||
Stereo PCD | 2.04 s | 0.49 | ||
Stereo PCD (200 px) | 0.58 s | 0.45 | ||
Mobile dataset | Stereo PCD (edges) | 4.22 s | 0.53 | |
Stereo PCD (edges + 200 px) | 0.86 s | 0.49 | ||
OpenCV SGBM | 1.72 s | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winter, J.; Nowak, R. Point Cloud Densification Algorithm for Multiple Cameras and Lidars Data Fusion. Sensors 2024, 24, 5786. https://doi.org/10.3390/s24175786
Winter J, Nowak R. Point Cloud Densification Algorithm for Multiple Cameras and Lidars Data Fusion. Sensors. 2024; 24(17):5786. https://doi.org/10.3390/s24175786
Chicago/Turabian StyleWinter, Jakub, and Robert Nowak. 2024. "Point Cloud Densification Algorithm for Multiple Cameras and Lidars Data Fusion" Sensors 24, no. 17: 5786. https://doi.org/10.3390/s24175786
APA StyleWinter, J., & Nowak, R. (2024). Point Cloud Densification Algorithm for Multiple Cameras and Lidars Data Fusion. Sensors, 24(17), 5786. https://doi.org/10.3390/s24175786