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Abstract – This article presents an improved
analysis of the changes to surface and far-field
quantities induced by rounding the sharp corners of a
two-dimensional scatterer. A prototypical scatterer with
one sharp corner is considered. It uses a perturbation
analysis of the integral equation formulation for this
scatterer on the basis of the double-layer potential. This
approach considerably simplifies previous treatment by
the authors, generalizes it to an arbitrary interior angle
at the corner, and improves the transparency of the main
result.

1. Introduction

There is extensive literature on scattering and
diffraction from sharp-cornered objects, as well as those
with smooth boundaries. However, there are few studies
of the transition from one to the other as the radius of
curvature of the rounded corner points tends to zero. A
survey of relevant studies is in [1, 2]. Numerical studies
[3, 4] of single-cornered structures with a range of
interior angles 2X showed that the nondimensionalized
maximum difference

ffiffiffi
k
p
jju‘

0 � u‘
q jj‘ in the far field u‘

0
of the sharp-cornered structure and that of its rounded
counterpart u‘

q under illumination by a time-harmonic
E-polarized plane wave of wavenumber k, is bounded
by Cðh0ÞðkqÞ2=m as kq � 0, where the constant C(h0)
depends upon the angle of incidence h0, the (minimum)
radius q of curvature at the rounded corner, and m¼ (2p
– 2X)/p. The analytic studies [1, 3] established this
result for a right-angled corner (2X ¼ p/2) by
considering the difference of the integral equations
obeyed by the surface distributions and estimating the
difference in the corresponding surface distributions.
The purpose of this article is to present a simpler and
more transparent approach, valid for all angles 0 , 2X
, p, by considering the rounded structure and its
surface distribution to be a perturbation of the
corresponding sharp-cornered scatterer and its distribu-
tion.

2. Formulation

Consider an infinitely long, perfectly electrically
conducting cylinder of uniform cross-section D, axis
parallel to the z-axis and illuminated by a time-
harmonic E-polarized plane wave uincðxÞ ¼ eikx�d of
wavenumber k, propagating with direction d ¼ (cosh0,

sinh0) parallel to the x-y plane. The time-harmonic
factor e–ixt is suppressed throughout. The incident field
induces a field usc scattered by the obstacle so that the
total field satisfies the Helmholtz equation exterior to D
and vanishes on the closed boundary ]D; the scattered
field usc obeys the Sommerfeld radiation condition and
the finiteness of energy condition in the vicinity of the
corner.

Let ]D be parametrized by

x ¼ xðtÞ ¼ x1ðtÞ; x2ðtÞð Þ; t 2 �p; p½ � ð1Þ
We will examine a scatterer ]D0 that can be regarded as
prototypical, namely, the lemniscate with interior corner
angle 2X, parametrized by

x ¼ x0ðtÞ ¼ a 2 sinð tj j=2Þ;� tan X sinðtÞð Þ; �p; p½ � ð2Þ
where a is a parameter equal to one length unit.
Consider a family of curves ]De in which the corners
have been rounded, having representation

x ¼ xeðtÞ

¼ a 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ ð1� e2Þsin2ðt=2Þ

q
;� tan X sinðtÞ

� �
ð3Þ

where t � [–p, p] and parametrized by the quantity e (0
, e , 1). Denote the radius of curvature at the point
xe(t) by q(t); its value q¼ q(0) at the corner point xe(0)
satisfies q ¼ 2e tan2 X þ O(e3), as e � 0.

As explained in [5], the solution to the exterior
Dirichlet problem is based on representing the scattered
field as a double-layer potential of a continuous surface
density / ¼ / (y) that is defined on ]D:

uscðxÞ ¼ 1

2
K/ðxÞ ¼

Z
]D

]Gðx; yÞ
]nðyÞ /ðyÞdsðyÞ ð4Þ

Here, G denotes the two-dimensional free-space Green’s
function Gðx; yÞ ¼ ði=4ÞH ð1Þ0 kjx� yjð Þ, and n ¼ n(y)
denotes the outward unit normal at the point y. The
surface distribution is then determined by the integral
equation on ]D,

/ðxÞ þ K/ðxÞ ¼ �2uincðxÞ ð5Þ
Uniqueness and solubility are discussed in [5]. Hence-
forth, we suppose that k is a wavenumber at which there
is a unique solution to this integral equation; once the
solution / has been found, the far field is readily
calculated.

3. Perturbation Analysis

Let K0 and Ke denote the double-layer operators
corresponding to the surface ]D0 and its rounded
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counterpart ]De, respectively; let /0¼ /0 (x0) and /e¼
/e (xe) be the corresponding surface densities.

Introduce the perturbation operator DK¼ Ke – K0

and the perturbation density D/ ¼ /e – /0; also, let
g0 (x0)¼ –2uinc(x0), ge (xe)¼ –2uinc(xe), so Dg¼ ge – g0

measures the field perturbation at corresponding points
on the surface obstacle and its rounded counterpart.
Thus,

I þ K0ð Þ/0 ¼ g0 ð6Þ
and

I þ K0 þ DKð Þ /0 þ D/ð Þ ¼ g0 þ Dg ð7Þ
Neglecting the double-perturbation term, DK (D/)
leads to the following approximate integral equation
for the quantity D/:

I þ K0ð Þ D/ð Þ ¼ Dg � DK /0ð Þ ð8Þ
We now proceed as in [1] to analyze (8). Let I be a

symmetrical interval of [–p, p] and set J ¼ �p; p½ � n I ,
with the following requirements on I: on the set J, the
maximum difference between the parametrizations x0

and xe is negligibly small, as well as that between the
derivatives x0

0 and x0
e. The maximum value of D/ on J is

negligibly small, and the interval I is electrically small;
that is, kjIj is small, so small argument approximations

may be used for the Hankel function H
ð1Þ
1 . In fact, the

interval I may be taken to be �e1=m; e1=m
� �

.
This last requirement equivalently means that for

points on the relevant surface parametrized by I, the
Green’s function and its normal derivative may be well
approximated by the corresponding values of the static
Green’s function and its normal derivative. Thus,
making the approximation D/ (t) ¼ 0 for t � J, and
setting w (t) ¼ D/ (t), the explicit form of the term K0

(D/) (t) is [5]:

1

p

Z e1=m

�e1=m

n x0 sð Þð Þ � x0 tð Þ � x0 sð Þð Þ
x0 tð Þ � x0 sð Þj j2

x0
0 sð Þ

�� ��w sð Þds ð9Þ

On the interval I, the scatterer ]D0 having corner
at t¼ 0 is well approximated by x0 (t)¼ (jtj, t tanX), i.e.,
part of an infinite wedge of angle 2X. Inserting this in
the integral, one obtains the bound

wk k 1

p

Z e1=m

0

t sin 2X
t2 � 2ts cos 2Xþ s2

ds , wk k 1� 2X
p

� �

ð10Þ
having replaced the upper limit by ‘. The norm �k k
used here is the maximum norm of the function, and for
an operator, the norm �k k denotes that induced by this
maximum norm. Because 0 , 2X , p, we have shown
that K0wk k � 1� 2X

p

� 	
wk k so that the norm of the

operator K0 is less than unity: K0k k, 1.
A similar argument is used to show that the norm

of the operator Ke is less than unity: Kek k, 1ð Þ. The
corresponding calculation for the operator is

1

p

Z e1=m

�e1=m

n xe sð Þð Þ � xe tð Þ � xe sð Þð Þ
xe tð Þ � xe sð Þj j2

x0
0 sð Þ

�� ��w sð Þds ð11Þ

On the interval I, the rounded scatterer has the form
xe sð Þ; xe;1 sð Þ;� tan X sin sð Þ

� 	
so that

x0
e sð Þ; x0e;1 sð Þ;� tan X


 �
;

x0
e sð Þ

�� ��2 ; x0e;1 sð Þ

 �2

þ tan2X
ð12Þ

and

x00
e sð Þ; x00e;1 sð Þ; 0


 �
ð13Þ

By inserting, for the denominator, a first-order
Taylor expansion, and for the numerator, the second-
order Taylor approximation

xe tð Þ ¼ xe sð Þ þ t � sð Þx0
e sð Þ þ 1

2
t � sð Þ2x00

e
t þ s

2


 �

ð14Þ
one deduces that jjKejj , 1. The details are in [1, 3].

We are now in a position to apply a norm analysis
to the approximate integral equation (8) for the quantity
D/. Because jjK0jj , 1, I þ K0ð Þ�1

�� �� � 1� K0k kð Þ�1

is a bounded finite quantity. Thus,

D/k k � I þ K0ð Þ�1
�� �� Dgk k þ K0k k þ Kek kð Þ / 0k kð Þ

ð15Þ
so

D/k k � 1� K0k kð Þ�1 Dgk k þ 2 / 0k kð Þ ð16Þ
It remains to estimate the size of the terms D/ and /0.

First, because Dg ¼ �2 uinc xeð Þ � uinc x0ð Þ
� 	

,

Dgk k � 2 eikxe�d � eikx0�d
�� �� � 2k xe � x0k k � 4ke

ð17Þ
Second, the estimate for /0 is derived from the total
field in the vicinity of the tip of the infinite wedge of
angle 2X; in terms of polar coordinates (r, h) centered
on the tip, it is given in [6] to be

utot
0 r; hð Þ ¼

4

C 1=mð Þ
1

2
kr

� �1=m

e�ip=m sin
h� X

m

� �
sin

h0 � X
m

� �

þO krð Þmin 2=m;1ð Þ

 �

ð18Þ

It is readily deduced [1, 3] that

/0ðrÞ ¼ Aþ BðkrÞ1=m þ OðkrÞ ð19Þ
as kr � 0, where A and B are suitable constants;
moreover, the constant A can be neglected because
DKðAÞk k is O(ke), as ke � 0. Inserting these estimates

for Dg and /0 in (16), we deduce that
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D/k k � 1� K0k kð Þ�1
4keþ 2B keð Þ1=m

 �

þ O keð Þ

ð20Þ
as ke � 0. Bearing in mind that 1/m , 1, we conclude

that D/Þk k ¼ O keð Þ1=m

 �

, as ke � 0.

4. Conclusion

The perturbation D/ in the surface density
distribution has been determined by a perturbation
analysis of the underlying integral equation formulation
for the surface density distribution on the sharp-
cornered scatterer under consideration. It may now be
inserted in the expressions [5] for the far field u‘

0 of the
sharp-cornered structure and that of its rounded
counterpart u‘

e to obtain the corresponding perturbation
in the far-field quantities. As shown in [1, 3], it readily

follows that
ffiffiffi
k
p

u‘
0 � u‘

e

�� �� ¼ O keð Þ2=m

 �

as ke � 0. As

the result is dependent upon the angle h0 of incidence of
the illuminating plane wave and bearing in mind that
the radius of curvature q at the corner point satisfies q¼
2e tan2 XþO (e3), as e� 0, we may restate the result in
the form given in the introduction. The restriction 0 ,
2X , p on the corner angle precludes a structure with
either a cusp at the corner or no genuine corner (i.e., a
smooth surface).

The result is consistent with the numerical studies
[3, 4] of single-cornered structures with a range of interior
angles 2X, as well as structures with multiple corners (of
the same interior angle). Those studies provided strong

evidence that the maximum difference
ffiffiffi
k
p

u‘
0 � u‘

q

��� ��� is

not merely bounded by the term O ðkqÞ2=m

 �

but has the

more precise estimate Cðh0ÞðkqÞ2=m þ o ðkqÞ2=m

 �

, as kq

� 0, where the constant C(h0) depends upon the angle of
incidence h0.

The advantage of the approach outlined in this
article is that it considerably simplifies the previous
treatment by the authors in [1, 3], it generalizes the
main result to an arbitrary interior angle at the corner,
and it improves the transparency of its derivation. It
opens the way to consideration of the impact of
differing types of rounding that might be applied to
the corner.
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