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Abstract – In this article, we present a processing
chain for multitarget tracking in an indoor scenario
using a Texas Instruments IWR6843 radar development
kit. The processing chain works on top of a radar point
cloud and can detect and track people using a clustering
algorithm and Kalman filtering. The detected and
postprocessed data are then fused onto a live image
acquisition from a surveillance camera as a comple-
mentary sensor.

1. Introduction

Radar is a widely used technology in military and
civil applications, such as ballistic targeting, weather
forecasting, and speed detectors [1]. With the growth of
smart cities and industrial automation, radar is finding
new applications as a sensor capable of providing
reliable data without raising data protection concerns.

Emerging smart cities pushed surveillance cam-
eras to forefront as one of the most viable sensors
capable of detecting and tracking people and objects in
real time by algorithms enabled through machine
learning or artificial intelligence. Although the camera
is widely used, it has some problems when visibility is
low that can be caused by nonbeneficial atmospheric
conditions. This is where radar enters as a complemen-
tary sensor to help the camera with point cloud data that
are unaffected by those atmospheric conditions [2].

In this article, an application is presented that is
capable of using radar data, detecting and tracking
people within the radar field of view (FoV) and merging
these data with real-time image streaming from a
surveillance camera. The radar of choice was the Texas
Instruments (TI) IWR6843ISK-ODS, which is a multi-
ple-input multiple-output (MIMO), frequency-modulat-
ed continuous wave (FMCW) radar operating at the 60
GHz band and capable of providing real-time point
cloud detections in three-dimensional (3D) Cartesian
coordinates together with velocity information.

2. People Detection, Tracking, and Sensor
Fusion

In this section, we describe a processing chain that
can detect and track multiple persons in the FoV using
point clouds and that is composed of four main steps:
clustering, filtering, tracking, and sensor fusion (see
Figure 1).

2.1 Clustering

The first stage is to find detections in the Cartesian
data. To do so, clustering methods can identify a group
of points in the spatial domain with an arbitrary shape,
which is the case of data retrieved from the radar. The
method chosen was density-based spatial clustering of
applications with noise (DBSCAN) [3]. This method
relies only on the minimum number of points (min Pts)
and the maximum distance between them (Eps). The
intuitive way for a human to visually detect a cluster is
to find points that are closely spaced between them; this
is the key idea behind DBSCAN. For each point
detected in a given Eps radius, the neighborhood has to
have a minimum number of points belonging to the
spherical volume. After the clusters are identified, the
centroid is calculated and used for tracking purposes.

2.2 Filtering

The clutter originating from multipath reflections
creates clusters of points in different spatial coordinates,
so a single person moving in a room can originate
multiple clusters [4]. Typically, a multipath reflection
means a longer distance traveled by the wave, and the
power received by the antennas is inversely proportion-
al to the traveled distance, meaning that the clutter will
have a much smaller power. Because the multipath
distance is usually longer than the direct distance, the
average SNR of a cluster originated by a real target will
be larger than the respective clutter SNR, so for a
cluster to be considered a target, it will need to have an
average SNR larger than a certain threshold that scales
with distance to the radar.

Objects with an obstructed line of sight (no direct
path) yet inside the radar’s FoV may be detected if the
reflections are so strong that the radar’s processing
chain does not consider it as noise. In those situations
where the radar detects multipath reflections, the
location of the detections is the direct path between
the radar and the last bounce of the reflected wave. Such
types of detections are rarely obtained, as they
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difficultly trigger a cluster identification in the
DBSCAN algorithm.

2.3 Tracking

The Kalman filter is a mathematical model that
uses measurements over time that may contain noise
and produce a prediction about the real values of the
state vector, which contains information about the
spatial position, velocity, and acceleration in a 3D
Cartesian space. These predictions are based on
previous measurements and assume a constant acceler-
ation model [5]. The state transition matrix, F, is used to
describe the dynamics of the system with t time between
measurements. Since it is a constant acceleration model,
the state change between each time step is described as
follows:

Xk ¼ Xk�1 þ _X k�1Dt þ €X k�1

Dt2

2
_X k ¼ _X k�1 þ €X k�1Dt

€X k ¼ €X k�1

ð1Þ

where X ¼ x; y; z; _x; _y; _z;€x;€y;€z½ �T represents the state
vector that stores the measurement variables. The state
transition matrix, F, is then defined as the following
matrix (2) with the system behavior derived from the
Newtonian equation x ¼ x0 þ v0t þ 1
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ð2Þ
The state vector, X, at the kth measurement is

Xk ¼ FXk�1 þ wk ð3Þ

Zk ¼ HXk�1 þ ek ð4Þ
where wk is the process noise with covariance Q, which
represents the deviation between the actual state and the

motion model. Zk is the system measurement that can be
extracted through the observation matrix, Hk, and ek is
the measurement noise.

2.3.1 Predict Stage: The first step is to predict an a
priori state estimate, Xk, and covariance, Pk, as defined by

Xk ¼ FXk�1 þ wk�1

Pk ¼ FkPk�1FT
k þ QK

ð5Þ

2.3.2 Update Stage: Then the measurement
residual, yk, is calculated by using

yk ¼ zk � HXk ð6Þ
The residual covariance, Sk, is calculated through

(7) and the respective Kalman filter gain, Kk, with (8),
with Rk the measurement covariance matrix obtained
from the measurement residual, yk:

Sk ¼ HkPkHT
k þ Rk ð7Þ

Then the Kalman gain matrix, Kk, is calculated as

Kk ¼ PkHT
k S�1

k ð8Þ
After the Kalman gain is calculated, the updated state
and covariance estimation are reached through

Xk ¼ Xk�1 þ Kkyk

Pk ¼ I � KkHkð ÞPk

ð9Þ

The state transition, Fk, and observation matrix,
Hk, are nonlinear differentiable equations. The extended
Kalman filter approximates these functions into a linear
approximation by taking the partial derivatives at point
xk [6]:

Fk ¼
]f

]x
jXk

Hk ¼
]h

]x
jXk

ð10Þ

The partial derivatives are computed through the
Jacobian of the matrices, which means that the Jacobian
is iteratively calculated for each time step.

As seen in Figure 2, the algorithm starts by
predicting every existent track. The results of the
predict stage are compared to the measured cluster
centroid, and then the closest distance between the
centroid and the prediction is the associated one. After
the association stage, the measurement is used to
calculate the update stage, and a new state vector for
the track is obtained.

2.4 Sensor Fusion

The last part of the processing chain is to merge
the 3D data onto a two-dimensional (2D) image
provided by the surveillance camera. This is done
through perspective projection, where a 3D point with
Cartesian coordinates is projected onto a plane at a focal
distance (f) [7]. This can be seen in Figure 3, and the

Figure 1. Setup installation and application flowchart.
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coordinates of the projection onto the plane can be
calculated through triangle similarities:

x0

f
¼ X

Y
¼) x0 ¼ f

X

Y
ð11Þ

where x0 is the coordinate of the projection onto the
plane, X and Y are the 3D Cartesian coordinates of the
target, and f is the focal distance. The coordinates of the
z0 can also be estimated the same way as the above:

z0

f
¼ Z

Y
¼) z0 ¼ f

Z

Y
ð12Þ

Then each projected point must be converted into
a pixel location on an image.

3. Experimental Results

The configured parameters of the FMCW radar
are presented in Table 1. The selected configuration was
the common ground found to make possible the
detection of multiple persons with large enough clusters
so that the DBSCAN algorithm was able to separate the
clusters into different targets and label them.

For tracking purpose, three tests were done:

1. A person walking in direction of the radar

2. A person doing an ‘‘8’’ walking shape

3. Two people walking in opposite directions

The results are shown in Figure 4.
The green points are the cluster centroids

detected, and the blue line is the evolution of the
Kalman state vector.

For the sensor fusion, the point clouds and the
target location were projected onto an image, as seen in

Figure 2. Tracking logic with the predict, associate, and update
stages.

Figure 3. Perspective projection of a 3D point onto an image plane.
Figure 4. Tracking tests with real-time radar point cloud data and
algorithm postprocessing.

Table 1. Radar characteristics and parameters used for the
experiments

Initial frequency 60.20 GHz
Ramp slope 74.95 MHz/ls
Bandwidth 2974 MHz
Range resolution 0.05 m
Maximum range 5.4 m
Velocity resolution 0.18 km/h
Maximum velocity 26.9 km/h
Sampling frequency 2.95 Msps
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Figure 5. The red bounding box represents the target
location, and the points are the point cloud projections.

Since the radar has a wider azimuth FoV, the
black columns represent the camera blind side, which is
enhanced by the radar data, as shown in Figure 6, being
able to estimate a person outside the camera FoV.

4. Conclusion

A processing chain for multiperson detection and
tracking using a MIMO FMCW radar was presented.
This 3D point cloud information was also fused with a

video camera for surveillance system improvement. The
processing was evaluated in multiple scenarios where
the tracking was able to follow the walking path and the
data were projected onto a live image stream. The
presented sensor fusion technique works in an asyn-
chronous mode; that is, the radar tracking operates with
a variable processing time between 10 and 20 frames
per second, while the video stream runs at a fixed rate of
30 frames per second. This was implemented in a way
to ensure that the video stream is not bottlenecked by
the point cloud tracking process.
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Figure 5. Sensor fusion of 3D data onto image with enhanced FoV.

Figure 6. Enhancing the camera FoV with detection outside the
camera FoV.
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