Computer Science > Software Engineering
[Submitted on 29 May 2022]
Title:To test, or not to test: A proactive approach for deciding complete performance test initiation
View PDFAbstract:Software performance testing requires a set of inputs that exercise different sections of the code to identify performance issues. However, running tests on a large set of inputs can be a very time-consuming process. It is even more problematic when test inputs are constantly growing, which is the case with a large-scale scientific organization such as CERN where the process of performing scientific experiment generates plethora of data that is analyzed by physicists leading to new scientific discoveries. Therefore, in this article, we present a test input minimization approach based on a clustering technique to handle the issue of testing on growing data. Furthermore, we use clustering information to propose an approach that recommends the tester to decide when to run the complete test suite for performance testing. To demonstrate the efficacy of our approach, we applied it to two different code updates of a web service which is used at CERN and we found that the recommendation for performance test initiation made by our approach for an update with bottleneck is valid.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.