Computer Science > Software Engineering
[Submitted on 31 May 2022]
Title:A Replication Study on Predicting Metamorphic Relations at Unit Testing Level
View PDFAbstract:Metamorphic Testing (MT) addresses the test oracle problem by examining the relations between inputs and outputs of test executions. Such relations are known as Metamorphic Relations (MRs). In current practice, identifying and selecting suitable MRs is usually a challenging manual task, requiring a thorough grasp of the SUT and its application domain. Thus, Kanewala et al. proposed the Predicting Metamorphic Relations (PMR) approach to automatically suggest MRs from a list of six pre-defined MRs for testing newly developed methods. PMR is based on a classification model trained on features extracted from the control-flow graph (CFG) of 100 Java methods. In our replication study, we explore the generalizability of PMR. First, we rebuild the entire preprocessing and training pipeline and repeat the original study in a close replication to verify the reported results and establish the basis for further experiments. Second, we perform a conceptual replication to explore the reusability of the PMR model trained on CFGs from Java methods in the first step for functionally identical methods implemented in Python and C++. Finally, we retrain the model on the CFGs from the Python and C++ methods to investigate the dependence on programming language and implementation details. We were able to successfully replicate the original study achieving comparable results for the Java methods set. However, the prediction performance of the Java-based classifiers significantly decreases when applied to functionally equivalent Python and C++ methods despite using only CFG features to abstract from language details. Since the performance improved again when the classifiers were retrained on the CFGs of the methods written in Python and C++, we conclude that the PMR approach can be generalized, but only when classifiers are developed starting from code artefacts in the used programming language.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.