Computer Science > Data Structures and Algorithms
[Submitted on 15 Jul 2022]
Title:Fixed-Parameter Tractability of Maximum Colored Path and Beyond
View PDFAbstract:We introduce a general method for obtaining fixed-parameter algorithms for problems about finding paths in undirected graphs, where the length of the path could be unbounded in the parameter. The first application of our method is as follows.
We give a randomized algorithm, that given a colored $n$-vertex undirected graph, vertices $s$ and $t$, and an integer $k$, finds an $(s,t)$-path containing at least $k$ different colors in time $2^k n^{O(1)}$. This is the first FPT algorithm for this problem, and it generalizes the algorithm of Björklund, Husfeldt, and Taslaman [SODA 2012] on finding a path through $k$ specified vertices. It also implies the first $2^k n^{O(1)}$ time algorithm for finding an $(s,t)$-path of length at least $k$.
Our method yields FPT algorithms for even more general problems. For example, we consider the problem where the input consists of an $n$-vertex undirected graph $G$, a matroid $M$ whose elements correspond to the vertices of $G$ and which is represented over a finite field of order $q$, a positive integer weight function on the vertices of $G$, two sets of vertices $S,T \subseteq V(G)$, and integers $p,k,w$, and the task is to find $p$ vertex-disjoint paths from $S$ to $T$ so that the union of the vertices of these paths contains an independent set of $M$ of cardinality $k$ and weight $w$, while minimizing the sum of the lengths of the paths. We give a $2^{p+O(k^2 \log (q+k))} n^{O(1)} w$ time randomized algorithm for this problem.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.