Computer Science > Machine Learning
[Submitted on 26 Sep 2022]
Title:Efficient Multi-Prize Lottery Tickets: Enhanced Accuracy, Training, and Inference Speed
View PDFAbstract:Recently, Diffenderfer and Kailkhura proposed a new paradigm for learning compact yet highly accurate binary neural networks simply by pruning and quantizing randomly weighted full precision neural networks. However, the accuracy of these multi-prize tickets (MPTs) is highly sensitive to the optimal prune ratio, which limits their applicability. Furthermore, the original implementation did not attain any training or inference speed benefits. In this report, we discuss several improvements to overcome these limitations. We show the benefit of the proposed techniques by performing experiments on CIFAR-10.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.