Computer Science > Robotics
[Submitted on 4 Oct 2022 (v1), last revised 21 Mar 2023 (this version, v2)]
Title:Safe Self-Supervised Learning in Real of Visuo-Tactile Feedback Policies for Industrial Insertion
View PDFAbstract:Industrial insertion tasks are often performed repetitively with parts that are subject to tight tolerances and prone to breakage. Learning an industrial insertion policy in real is challenging as the collision between the parts and the environment can cause slippage or breakage of the part. In this paper, we present a safe self-supervised method to learn a visuo-tactile insertion policy that is robust to grasp pose variations. The method reduces human input and collisions between the part and the receptacle. The method divides the insertion task into two phases. In the first align phase, a tactile-based grasp pose estimation model is learned to align the insertion part with the receptacle. In the second insert phase, a vision-based policy is learned to guide the part into the receptacle. The robot uses force-torque sensing to achieve a safe self-supervised data collection pipeline. Physical experiments on the USB insertion task from the NIST Assembly Taskboard suggest that the resulting policies can achieve 45/45 insertion successes on 45 different initial grasp poses, improving on two baselines: (1) a behavior cloning agent trained on 50 human insertion demonstrations (1/45) and (2) an online RL policy (TD3) trained in real (0/45).
Submission history
From: Letian Fu [view email][v1] Tue, 4 Oct 2022 03:11:05 UTC (28,524 KB)
[v2] Tue, 21 Mar 2023 06:38:47 UTC (28,726 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.