Computer Science > Human-Computer Interaction
[Submitted on 20 Oct 2022]
Title:Using Large Language Models to Enhance Programming Error Messages
View PDFAbstract:A key part of learning to program is learning to understand programming error messages. They can be hard to interpret and identifying the cause of errors can be time-consuming. One factor in this challenge is that the messages are typically intended for an audience that already knows how to program, or even for programming environments that then use the information to highlight areas in code. Researchers have been working on making these errors more novice friendly since the 1960s, however progress has been slow. The present work contributes to this stream of research by using large language models to enhance programming error messages with explanations of the errors and suggestions on how to fix the error. Large language models can be used to create useful and novice-friendly enhancements to programming error messages that sometimes surpass the original programming error messages in interpretability and actionability. These results provide further evidence of the benefits of large language models for computing educators, highlighting their use in areas known to be challenging for students. We further discuss the benefits and downsides of large language models and highlight future streams of research for enhancing programming error messages.
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.