Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 18 Feb 2023 (v1), last revised 23 Feb 2023 (this version, v2)]
Title:RobustDistiller: Compressing Universal Speech Representations for Enhanced Environment Robustness
View PDFAbstract:Self-supervised speech pre-training enables deep neural network models to capture meaningful and disentangled factors from raw waveform signals. The learned universal speech representations can then be used across numerous downstream tasks. These representations, however, are sensitive to distribution shifts caused by environmental factors, such as noise and/or room reverberation. Their large sizes, in turn, make them unfeasible for edge applications. In this work, we propose a knowledge distillation methodology termed RobustDistiller which compresses universal representations while making them more robust against environmental artifacts via a multi-task learning objective. The proposed layer-wise distillation recipe is evaluated on top of three well-established universal representations, as well as with three downstream tasks. Experimental results show the proposed methodology applied on top of the WavLM Base+ teacher model outperforming all other benchmarks across noise types and levels, as well as reverberation times. Oftentimes, the obtained results with the student model (24M parameters) achieved results inline with those of the teacher model (95M).
Submission history
From: Heitor R. Guimarães [view email][v1] Sat, 18 Feb 2023 23:13:47 UTC (557 KB)
[v2] Thu, 23 Feb 2023 03:22:08 UTC (559 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.