Mathematics > Probability
[Submitted on 22 Feb 2023 (v1), last revised 29 Nov 2023 (this version, v2)]
Title:Numerical approximation of SDEs with fractional noise and distributional drift
View PDFAbstract:We study the numerical approximation of multidimensional stochastic differential equations (SDEs) with distributional drift, driven by a fractional Brownian motion. We work under the Catellier-Gubinelli condition for strong well-posedness, which assumes that the regularity of the drift is strictly greater than $1-1/(2H)$, where $H$ is the Hurst parameter of the noise. The focus here is on the case $H<1/2$, allowing the drift $b$ to be a distribution. We compare the solution $X$ of the SDE with drift $b$ and its tamed Euler scheme with mollified drift $b^n$, to obtain an explicit rate of convergence for the strong error. This extends previous results where $b$ was assumed to be a bounded measurable function. In addition, we investigate the limit case when the regularity of the drift is equal to $1-1/(2H)$, and obtain a non-explicit rate of convergence. As a byproduct of this convergence, there exists a strong solution that is pathwise unique in a class of Hölder continuous solutions.
The proofs rely on stochastic sewing techniques, especially to deduce new regularising properties of the discrete-time fractional Brownian motion. In the limit case, we introduce a critical Grönwall-type lemma to quantify the error. We also present several examples and numerical simulations that illustrate our results.
Submission history
From: El Mehdi Haress [view email][v1] Wed, 22 Feb 2023 15:43:30 UTC (58 KB)
[v2] Wed, 29 Nov 2023 16:59:41 UTC (60 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.