Electrical Engineering and Systems Science > Systems and Control
[Submitted on 24 Feb 2023]
Title:A holistically 3D-printed flexible millimeter-wave Doppler radar: Towards fully printed high-frequency multilayer flexible hybrid electronics systems
View PDFAbstract:Flexible hybrid electronics (FHE) is an emerging technology enabled through the integration of advanced semiconductor devices and 3D printing technology. It unlocks tremendous market potential by realizing low-cost flexible circuits and systems that can be conformally integrated into various applications. However, the operating frequencies of most reported FHE systems are relatively low. It is also worth to note that reported FHE systems have been limited to relatively simple design concept (since complex systems will impose challenges in aspects such as multilayer interconnections, printing materials, and bonding layers). Here, we report a fully 3D-printed flexible four-layer millimeter-wave Doppler radar (i.e., a millimeter-wave FHE system). The sensing performance and flexibility of the 3D-printed radar are characterized and validated by general field tests and bending tests, respectively. Our results demonstrate the feasibility of developing fully 3D-printed high-frequency multilayer FHE, which can be conformally integrated into irregular surfaces (e.g., vehicle bumpers) for applications such as vehicle radars and wearable electronics.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.