Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Mar 2023 (v1), last revised 18 Dec 2023 (this version, v3)]
Title:Few-shot Neural Radiance Fields Under Unconstrained Illumination
View PDFAbstract:In this paper, we introduce a new challenge for synthesizing novel view images in practical environments with limited input multi-view images and varying lighting conditions. Neural radiance fields (NeRF), one of the pioneering works for this task, demand an extensive set of multi-view images taken under constrained illumination, which is often unattainable in real-world settings. While some previous works have managed to synthesize novel views given images with different illumination, their performance still relies on a substantial number of input multi-view images. To address this problem, we suggest ExtremeNeRF, which utilizes multi-view albedo consistency, supported by geometric alignment. Specifically, we extract intrinsic image components that should be illumination-invariant across different views, enabling direct appearance comparison between the input and novel view under unconstrained illumination. We offer thorough experimental results for task evaluation, employing the newly created NeRF Extreme benchmark-the first in-the-wild benchmark for novel view synthesis under multiple viewing directions and varying illuminations.
Submission history
From: SeokYeong Lee [view email][v1] Tue, 21 Mar 2023 10:32:27 UTC (27,241 KB)
[v2] Wed, 22 Mar 2023 03:30:47 UTC (27,241 KB)
[v3] Mon, 18 Dec 2023 10:40:12 UTC (22,008 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.