Computer Science > Computer Science and Game Theory
[Submitted on 21 May 2023 (v1), last revised 9 Mar 2024 (this version, v5)]
Title:Markov $α$-Potential Games
View PDF HTML (experimental)Abstract:This paper proposes a new framework of Markov $\alpha$-potential games to study Markov games. In this new framework, Markov games are shown to be Markov $\alpha$-potential games, and the existence of an associated $\alpha$-potential function is established. Any optimizer of an $\alpha$-potential function is shown to be an $\alpha$-stationary NE. Two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, are studied via this framework of Markov $\alpha$-potential games, with explicit characterization of an upper bound for $\alpha$ and its relation to game parameters. Additionally, a semi-infinite linear programming based formulation is presented to obtain an upper bound for $\alpha$ for any Markov game. Furthermore, two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, are presented along with their Nash regret analysis, and corroborated by numerical experiments.
Submission history
From: Xinyu Li [view email][v1] Sun, 21 May 2023 19:27:31 UTC (491 KB)
[v2] Wed, 24 May 2023 18:01:12 UTC (476 KB)
[v3] Tue, 17 Oct 2023 16:32:48 UTC (775 KB)
[v4] Fri, 10 Nov 2023 07:11:19 UTC (1,021 KB)
[v5] Sat, 9 Mar 2024 18:41:01 UTC (1,025 KB)
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.