Computer Science > Machine Learning
[Submitted on 26 May 2023]
Title:Large language models improve Alzheimer's disease diagnosis using multi-modality data
View PDFAbstract:In diagnosing challenging conditions such as Alzheimer's disease (AD), imaging is an important reference. Non-imaging patient data such as patient information, genetic data, medication information, cognitive and memory tests also play a very important role in diagnosis. Effect. However, limited by the ability of artificial intelligence models to mine such information, most of the existing models only use multi-modal image data, and cannot make full use of non-image data. We use a currently very popular pre-trained large language model (LLM) to enhance the model's ability to utilize non-image data, and achieved SOTA results on the ADNI dataset.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.