Computer Science > Computational Geometry
[Submitted on 14 Aug 2023]
Title:Kernelization for Spreading Points
View PDFAbstract:We consider the following problem about dispersing points. Given a set of points in the plane, the task is to identify whether by moving a small number of points by small distance, we can obtain an arrangement of points such that no pair of points is ``close" to each other. More precisely, for a family of $n$ points, an integer $k$, and a real number $d > 0$, we ask whether at most $k$ points could be relocated, each point at distance at most $d$ from its original location, such that the distance between each pair of points is at least a fixed constant, say $1$. A number of approximation algorithms for variants of this problem, under different names like distant representatives, disk dispersing, or point spreading, are known in the literature. However, to the best of our knowledge, the parameterized complexity of this problem remains widely unexplored. We make the first step in this direction by providing a kernelization algorithm that, in polynomial time, produces an equivalent instance with $O(d^2k^3)$ points. As a byproduct of this result, we also design a non-trivial fixed-parameter tractable (FPT) algorithm for the problem, parameterized by $k$ and $d$. Finally, we complement the result about polynomial kernelization by showing a lower bound that rules out the existence of a kernel whose size is polynomial in $k$ alone, unless $\mathsf{NP} \subseteq \mathsf{coNP}/\text{poly}$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.