Computer Science > Machine Learning
[Submitted on 25 Sep 2023]
Title:Learning to Abstain From Uninformative Data
View PDFAbstract:Learning and decision-making in domains with naturally high noise-to-signal ratio, such as Finance or Healthcare, is often challenging, while the stakes are very high. In this paper, we study the problem of learning and acting under a general noisy generative process. In this problem, the data distribution has a significant proportion of uninformative samples with high noise in the label, while part of the data contains useful information represented by low label noise. This dichotomy is present during both training and inference, which requires the proper handling of uninformative data during both training and testing. We propose a novel approach to learning under these conditions via a loss inspired by the selective learning theory. By minimizing this loss, the model is guaranteed to make a near-optimal decision by distinguishing informative data from uninformative data and making predictions. We build upon the strength of our theoretical guarantees by describing an iterative algorithm, which jointly optimizes both a predictor and a selector, and evaluates its empirical performance in a variety of settings.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.