Computer Science > Graphics
[Submitted on 26 Sep 2023 (v1), last revised 3 Oct 2023 (this version, v2)]
Title:The Shortest Route Is Not Always the Fastest: Probability-Modeled Stereoscopic Eye Movement Completion Time in VR
View PDFAbstract:Speed and consistency of target-shifting play a crucial role in human ability to perform complex tasks. Shifting our gaze between objects of interest quickly and consistently requires changes both in depth and direction. Gaze changes in depth are driven by slow, inconsistent vergence movements which rotate the eyes in opposite directions, while changes in direction are driven by ballistic, consistent movements called saccades, which rotate the eyes in the same direction. In the natural world, most of our eye movements are a combination of both types. While scientific consensus on the nature of saccades exists, vergence and combined movements remain less understood and agreed upon.
We eschew the lack of scientific consensus in favor of proposing an operationalized computational model which predicts the speed of any type of gaze movement during target-shifting in 3D. To this end, we conduct a psychophysical study in a stereo VR environment to collect more than 12,000 gaze movement trials, analyze the temporal distribution of the observed gaze movements, and fit a probabilistic model to the data. We perform a series of objective measurements and user studies to validate the model. The results demonstrate its predictive accuracy, generalization, as well as applications for optimizing visual performance by altering content placement. Lastly, we leverage the model to measure differences in human target-changing time relative to the natural world, as well as suggest scene-aware projection depth. By incorporating the complexities and randomness of human oculomotor control, we hope this research will support new behavior-aware metrics for VR/AR display design, interface layout, and gaze-contingent rendering.
Submission history
From: Budmonde Duinkharjav [view email][v1] Tue, 26 Sep 2023 18:40:17 UTC (32,863 KB)
[v2] Tue, 3 Oct 2023 15:35:30 UTC (32,838 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.