Computer Science > Graphics
[Submitted on 30 Sep 2023]
Title:Exploiting Human Color Discrimination for Memory- and Energy-Efficient Image Encoding in Virtual Reality
View PDFAbstract:Virtual Reality (VR) has the potential of becoming the next ubiquitous computing platform. Continued progress in the burgeoning field of VR depends critically on an efficient computing substrate. In particular, DRAM access energy is known to contribute to a significant portion of system energy. Today's framebuffer compression system alleviates the DRAM traffic by using a numerically lossless compression algorithm. Being numerically lossless, however, is unnecessary to preserve perceptual quality for humans. This paper proposes a perceptually lossless, but numerically lossy, system to compress DRAM traffic. Our idea builds on top of long-established psychophysical studies that show that humans cannot discriminate colors that are close to each other. The discrimination ability becomes even weaker (i.e., more colors are perceptually indistinguishable) in our peripheral vision. Leveraging the color discrimination (in)ability, we propose an algorithm that adjusts pixel colors to minimize the bit encoding cost without introducing visible artifacts. The algorithm is coupled with lightweight architectural support that, in real-time, reduces the DRAM traffic by 66.9\% and outperforms existing framebuffer compression mechanisms by up to 20.4\%. Psychophysical studies on human participants show that our system introduce little to no perceptual fidelity degradation.
Submission history
From: Nisarg Ujjainkar [view email][v1] Sat, 30 Sep 2023 17:28:59 UTC (13,652 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.