Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Jan 2024 (v1), last revised 23 Jan 2024 (this version, v2)]
Title:APLe: Token-Wise Adaptive for Multi-Modal Prompt Learning
View PDF HTML (experimental)Abstract:Pre-trained Vision-Language (V-L) models set the benchmark for generalization to downstream tasks among the noteworthy contenders. Many characteristics of the V-L model have been explored in existing research including the challenge of the sensitivity to text input and the tuning process across multi-modal prompts. With the advanced utilization of the V-L model like CLIP, recent approaches deploy learnable prompts instead of hand-craft prompts to boost the generalization performance and address the aforementioned challenges. Inspired by layer-wise training, which is wildly used in image fusion, we note that using a sequential training process to adapt different modalities branches of CLIP efficiently facilitates the improvement of generalization. In the context of addressing the multi-modal prompting challenge, we propose Token-wise Adaptive for Multi-modal Prompt Learning (APLe) for tuning both modalities prompts, vision and language, as tokens in a sequential manner. APLe addresses the challenges in V-L models to promote prompt learning across both modalities, which indicates a competitive generalization performance in line with the state-of-the-art. Preeminently, APLe shows robustness and favourable performance in prompt-length experiments with an absolute advantage in adopting the V-L models.
Submission history
From: Guiming Cao [view email][v1] Fri, 12 Jan 2024 04:54:01 UTC (437 KB)
[v2] Tue, 23 Jan 2024 08:54:15 UTC (425 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.