Computer Science > Software Engineering
[Submitted on 8 Feb 2024]
Title:How to Refactor this Code? An Exploratory Study on Developer-ChatGPT Refactoring Conversations
View PDF HTML (experimental)Abstract:Large Language Models (LLMs), like ChatGPT, have gained widespread popularity and usage in various software engineering tasks, including refactoring, testing, code review, and program comprehension. Despite recent studies delving into refactoring documentation in commit messages, issues, and code review, little is known about how developers articulate their refactoring needs when interacting with ChatGPT. In this paper, our goal is to explore conversations between developers and ChatGPT related to refactoring to better understand how developers identify areas for improvement in code and how ChatGPT addresses developers' needs. Our approach relies on text mining refactoring-related conversations from 17,913 ChatGPT prompts and responses, and investigating developers' explicit refactoring intention. Our results reveal that (1) developer-ChatGPT conversations commonly involve generic and specific terms/phrases; (2) developers often make generic refactoring requests, while ChatGPT typically includes the refactoring intention; and (3) various learning settings when prompting ChatGPT in the context of refactoring. We envision that our findings contribute to a broader understanding of the collaboration between developers and AI models, in the context of code refactoring, with implications for model improvement, tool development, and best practices in software engineering.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.