Computer Science > Software Engineering
[Submitted on 19 Feb 2024]
Title:ASGNet: Adaptive Semantic Gate Networks for Log-Based Anomaly Diagnosis
View PDFAbstract:Logs are widely used in the development and maintenance of software systems. Logs can help engineers understand the runtime behavior of systems and diagnose system failures. For anomaly diagnosis, existing methods generally use log event data extracted from historical logs to build diagnostic models. However, we find that existing methods do not make full use of two types of features, (1) statistical features: some inherent statistical features in log data, such as word frequency and abnormal label distribution, are not well exploited. Compared with log raw data, statistical features are deterministic and naturally compatible with corresponding tasks. (2) semantic features: Logs contain the execution logic behind software systems, thus log statements share deep semantic relationships. How to effectively combine statistical features and semantic features in log data to improve the performance of log anomaly diagnosis is the key point of this paper. In this paper, we propose an adaptive semantic gate networks (ASGNet) that combines statistical features and semantic features to selectively use statistical features to consolidate log text semantic representation. Specifically, ASGNet encodes statistical features via a variational encoding module and fuses useful information through a well-designed adaptive semantic threshold mechanism. The threshold mechanism introduces the information flow into the classifier based on the confidence of the semantic features in the decision, which is conducive to training a robust classifier and can solve the overfitting problem caused by the use of statistical features. The experimental results on the real data set show that our method proposed is superior to all baseline methods in terms of various performance indicators.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.