Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Feb 2024 (v1), last revised 28 Jul 2024 (this version, v2)]
Title:SportsNGEN: Sustained Generation of Realistic Multi-player Sports Gameplay
View PDF HTML (experimental)Abstract:We present a transformer decoder based sports simulation engine, SportsNGEN, trained on sports player and ball tracking sequences, that is capable of generating sustained gameplay and accurately mimicking the decision making of real players. By training on a large database of professional tennis tracking data, we demonstrate that simulations produced by SportsNGEN can be used to predict the outcomes of rallies, determine the best shot choices at any point, and evaluate counterfactual or what if scenarios to inform coaching decisions and elevate broadcast coverage. By combining the generated simulations with a shot classifier and logic to start and end rallies, the system is capable of simulating an entire tennis match. We evaluate SportsNGEN by comparing statistics of the simulations with those of real matches between the same players. We show that the model output sampling parameters are crucial to simulation realism and that SportsNGEN is probabilistically well-calibrated to real data. In addition, a generic version of SportsNGEN can be customized to a specific player by fine-tuning on the subset of match data that includes that player. Finally, we show qualitative results indicating the same approach works for football.
Submission history
From: John Bronskill [view email][v1] Sat, 10 Feb 2024 01:16:21 UTC (4,811 KB)
[v2] Sun, 28 Jul 2024 21:59:57 UTC (4,922 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.