Economics > Econometrics
[Submitted on 3 May 2024]
Title:A Network Simulation of OTC Markets with Multiple Agents
View PDF HTML (experimental)Abstract:We present a novel agent-based approach to simulating an over-the-counter (OTC) financial market in which trades are intermediated solely by market makers and agent visibility is constrained to a network topology. Dynamics, such as changes in price, result from agent-level interactions that ubiquitously occur via market maker agents acting as liquidity providers. Two additional agents are considered: trend investors use a deep convolutional neural network paired with a deep Q-learning framework to inform trading decisions by analysing price history; and value investors use a static price-target to determine their trade directions and sizes. We demonstrate that our novel inclusion of a network topology with market makers facilitates explorations into various market structures. First, we present the model and an overview of its mechanics. Second, we validate our findings via comparison to the real-world: we demonstrate a fat-tailed distribution of price changes, auto-correlated volatility, a skew negatively correlated to market maker positioning, predictable price-history patterns and more. Finally, we demonstrate that our network-based model can lend insights into the effect of market-structure on price-action. For example, we show that markets with sparsely connected intermediaries can have a critical point of fragmentation, beyond which the market forms distinct clusters and arbitrage becomes rapidly possible between the prices of different market makers. A discussion is provided on future work that would be beneficial.
Current browse context:
econ.EM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.