Computer Science > Machine Learning
[Submitted on 8 May 2024]
Title:Model-Free Robust $ϕ$-Divergence Reinforcement Learning Using Both Offline and Online Data
View PDF HTML (experimental)Abstract:The robust $\phi$-regularized Markov Decision Process (RRMDP) framework focuses on designing control policies that are robust against parameter uncertainties due to mismatches between the simulator (nominal) model and real-world settings. This work makes two important contributions. First, we propose a model-free algorithm called Robust $\phi$-regularized fitted Q-iteration (RPQ) for learning an $\epsilon$-optimal robust policy that uses only the historical data collected by rolling out a behavior policy (with robust exploratory requirement) on the nominal model. To the best of our knowledge, we provide the first unified analysis for a class of $\phi$-divergences achieving robust optimal policies in high-dimensional systems with general function approximation. Second, we introduce the hybrid robust $\phi$-regularized reinforcement learning framework to learn an optimal robust policy using both historical data and online sampling. Towards this framework, we propose a model-free algorithm called Hybrid robust Total-variation-regularized Q-iteration (HyTQ: pronounced height-Q). To the best of our knowledge, we provide the first improved out-of-data-distribution assumption in large-scale problems with general function approximation under the hybrid robust $\phi$-regularized reinforcement learning framework. Finally, we provide theoretical guarantees on the performance of the learned policies of our algorithms on systems with arbitrary large state space.
Submission history
From: Kishan Panaganti Badrinath [view email][v1] Wed, 8 May 2024 23:52:37 UTC (92 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.