Computer Science > Computational Complexity
[Submitted on 27 Jun 2024]
Title:Resilient functions: Optimized, simplified, and generalized
View PDF HTML (experimental)Abstract:An $n$-bit boolean function is resilient to coalitions of size $q$ if any fixed set of $q$ bits is unlikely to influence the function when the other $n-q$ bits are chosen uniformly. We give explicit constructions of depth-$3$ circuits that are resilient to coalitions of size $cn/\log^{2}n$ with bias $n^{-c}$. Previous explicit constructions with the same resilience had constant bias. Our construction is simpler and we generalize it to biased product distributions.
Our proof builds on previous work; the main differences are the use of a tail bound for expander walks in combination with a refined analysis based on Janson's inequality.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.