Physics > Physics and Society
[Submitted on 15 Jul 2024 (v1), last revised 30 Nov 2024 (this version, v2)]
Title:Competition between group interactions and nonlinearity in voter dynamics on hypergraphs
View PDF HTML (experimental)Abstract:Social dynamics are often driven by both pairwise (i.e., dyadic) relationships and higher-order (i.e., polyadic) group relationships, which one can describe using hypergraphs. To gain insight into the impact of polyadic relationships on dynamical processes on networks, we formulate and study a polyadic voter process, which we call the group-driven voter model (GVM), that incorporates the effect of group interactions by nonlinear interactions that are subject to a group (i.e., hyperedge) constraint. By examining the competition between nonlinearity and group sizes, we show that the GVM achieves consensus faster than standard voter-model dynamics, with an optimal minimizing exit time. We substantiate this finding by using mean-field theory on annealed uniform hypergraphs with $N$ nodes, for which the exit time scales as ${\cal A}\ln N$, where the prefactor ${\cal A}$ depends both on the nonlinearity and on group-constraint factors. Our results reveal how competition between group interactions and nonlinearity shapes GVM dynamics. We thereby highlight the importance of such competing effects in complex systems with polyadic interactions.
Submission history
From: Jihye Kim [view email][v1] Mon, 15 Jul 2024 22:01:29 UTC (129 KB)
[v2] Sat, 30 Nov 2024 01:30:04 UTC (156 KB)
Current browse context:
physics.soc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.