Computer Science > Software Engineering
[Submitted on 14 Aug 2024]
Title:LLM-Enhanced Static Analysis for Precise Identification of Vulnerable OSS Versions
View PDF HTML (experimental)Abstract:Open-source software (OSS) has experienced a surge in popularity, attributed to its collaborative development model and cost-effective nature. However, the adoption of specific software versions in development projects may introduce security risks when these versions bring along vulnerabilities. Current methods of identifying vulnerable versions typically analyze and trace the code involved in vulnerability patches using static analysis with pre-defined rules. They then use syntactic-level code clone detection to identify the vulnerable versions. These methods are hindered by imprecisions due to (1) the inclusion of vulnerability-irrelevant code in the analysis and (2) the inadequacy of syntactic-level code clone detection. This paper presents Vercation, an approach designed to identify vulnerable versions of OSS written in C/C++. Vercation combines program slicing with a Large Language Model (LLM) to identify vulnerability-relevant code from vulnerability patches. It then backtraces historical commits to gather previous modifications of identified vulnerability-relevant code. We propose semantic-level code clone detection to compare the differences between pre-modification and post-modification code, thereby locating the vulnerability-introducing commit (vic) and enabling to identify the vulnerable versions between the patch commit and the vic. We curate a dataset linking 74 OSS vulnerabilities and 1013 versions to evaluate Vercation. On this dataset, our approach achieves the F1 score of 92.4%, outperforming current state-of-the-art methods. More importantly, Vercation detected 134 incorrect vulnerable OSS versions in NVD reports.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.