Computer Science > Machine Learning
[Submitted on 16 Oct 2024]
Title:Stress Assessment with Convolutional Neural Network Using PPG Signals
View PDFAbstract:Stress is one of the main issues of nowadays lifestyle. If it becomes chronic it can have adverse effects on the human body. Thus, the early detection of stress is crucial to prevent its hurting effects on the human body and have a healthier life. Stress can be assessed using physiological signals. To this end, Photoplethysmography (PPG) is one of the most favorable physiological signals for stress assessment. This research is focused on developing a novel technique to assess stressful events using raw PPG signals recorded by Empatica E4 sensor. To achieve this goal, an adaptive convolutional neural network (CNN) combined with Multilayer Perceptron (MLP) has been utilized to realize the detection of stressful events. This research will use a dataset that is publicly available and named wearable stress and effect detection (WESAD). This dataset will be used to simulate the proposed model and to examine the advantages of the proposed developed model. The proposed model in this research will be able to distinguish between normal events and stressful events. This model will be able to detect stressful events with an accuracy of 96.7%.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.