Computer Science > Machine Learning
[Submitted on 24 Dec 2019 (v1), last revised 25 Jan 2023 (this version, v3)]
Title:Meta-Learning PAC-Bayes Priors in Model Averaging
View PDFAbstract:Nowadays model uncertainty has become one of the most important problems in both academia and industry. In this paper, we mainly consider the scenario in which we have a common model set used for model averaging instead of selecting a single final model via a model selection procedure to account for this model's uncertainty to improve the reliability and accuracy of inferences. Here one main challenge is to learn the prior over the model set. To tackle this problem, we propose two data-based algorithms to get proper priors for model averaging. One is for meta-learner, the analysts should use historical similar tasks to extract the information about the prior. The other one is for base-learner, a subsampling method is used to deal with the data step by step. Theoretically, an upper bound of risk for our algorithm is presented to guarantee the performance of the worst situation. In practice, both methods perform well in simulations and real data studies, especially with poor-quality data.
Submission history
From: Weiran Huang [view email][v1] Tue, 24 Dec 2019 08:55:16 UTC (195 KB)
[v2] Wed, 25 Dec 2019 03:11:11 UTC (207 KB)
[v3] Wed, 25 Jan 2023 17:12:14 UTC (196 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.