Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Mar 2022 (v1), last revised 27 May 2022 (this version, v4)]
Title:Dynamic Group Transformer: A General Vision Transformer Backbone with Dynamic Group Attention
View PDFAbstract:Recently, Transformers have shown promising performance in various vision tasks. To reduce the quadratic computation complexity caused by each query attending to all keys/values, various methods have constrained the range of attention within local regions, where each query only attends to keys/values within a hand-crafted window. However, these hand-crafted window partition mechanisms are data-agnostic and ignore their input content, so it is likely that one query maybe attends to irrelevant keys/values. To address this issue, we propose a Dynamic Group Attention (DG-Attention), which dynamically divides all queries into multiple groups and selects the most relevant keys/values for each group. Our DG-Attention can flexibly model more relevant dependencies without any spatial constraint that is used in hand-crafted window based attention. Built on the DG-Attention, we develop a general vision transformer backbone named Dynamic Group Transformer (DGT). Extensive experiments show that our models can outperform the state-of-the-art methods on multiple common vision tasks, including image classification, semantic segmentation, object detection, and instance segmentation.
Submission history
From: Kai Liu [view email][v1] Tue, 8 Mar 2022 09:01:41 UTC (2,604 KB)
[v2] Wed, 9 Mar 2022 10:07:51 UTC (2,595 KB)
[v3] Thu, 28 Apr 2022 09:30:22 UTC (4,400 KB)
[v4] Fri, 27 May 2022 02:33:14 UTC (4,423 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.