Computer Science > Machine Learning
[Submitted on 9 Mar 2022 (v1), last revised 14 Apr 2022 (this version, v2)]
Title:SuperCone: Unified User Segmentation over Heterogeneous Experts via Concept Meta-learning
View PDFAbstract:We study the problem of user segmentation: given a set of users and one or more predefined groups or segments, assign users to their corresponding segments. As an example, for a segment indicating particular interest in a certain area of sports or entertainment, the task will be to predict whether each single user will belong to the segment. However, there may exist numerous long tail prediction tasks that suffer from data availability and may be of heterogeneous nature, which make it hard to capture using single off the shelf model architectures. In this work, we present SuperCone, our unified predicative segments system that addresses the above challenges. It builds on top of a flat concept representation that summarizes each user's heterogeneous digital footprints, and uniformly models each of the prediction task using an approach called "super learning ", that is, combining prediction models with diverse architectures or learning method that are not compatible with each other. Following this, we provide an end to end approach that learns to flexibly attend to best suited heterogeneous experts adaptively, while at the same time incorporating deep representations of the input concepts that augments the above experts. Experiments show that SuperCone significantly outperform state-of-the-art recommendation and ranking algorithms on a wide range of predicative segment tasks and public structured data learning benchmarks.
Submission history
From: Keqian Li Dr [view email][v1] Wed, 9 Mar 2022 04:11:39 UTC (13,740 KB)
[v2] Thu, 14 Apr 2022 21:37:27 UTC (13,952 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.